

Issued Mar. 2022

ACME Electronics Corporation 越峯電子材料股份有限公司

https://www.acme-ferrite.com.tw

COMPANY BRIEF

ACME Electronics Corporation, a subsidiary of USI Corporation, has been developed into one of the world's leading manufacturers of soft magnetic products since her establishment. Incorporated in 1991 and listed in Taiwan OTC market in 2005, ACME with her headquarter in Taipei possesses four manufacturing sites where one is in Taiwan, one in Malaysia, and two in China.

Our Products

A variety of soft magnetic products in different material types, core shapes and sizes are manufactured in ACME. These products are widely used for the manufacture of chokes, inductors, filters, transformers, antennas and other components or devices that are applied in the fields of communication, lighting, alternative energy, automotive, medical system, consumer and industrial electronics. ACME's products are adopted by leading manufacturers of these components and devices worldwide.

Headquarter of USI Group, Taipei

Our History

- **1991** ACME Electronics Corporation, Taiwan was incorporated.
- **1994** Built the first manufacturing facility in Kuan-Yin Distrit, Taoyuan County, Taiwan.
- **2000** Incorporated ACME Electronics (Kunshan) Co., Ltd., China and built a modern manufacturing facility to service the market in Northern and Eastern China. This factory had been expanded and equipped with the latest machinery and equipment. It now has a sintering capacity 6,800 metric tons a year.
- **2005** Incorporated ACME Electronics(Guangzhou) Co., Ltd., China. Located in Zhengcheng city, this new and well equipped facility has a sintering capacity of 6,300 metric tons a year and sevices the market in southern China.
- **2009** Acquired ACME Ferrite Products Sdn. Bhd., Malaysia. Located in Ipoh, Perak, ACME Malaysia is a leading Ni-Zn soft ferrite manufacturer that specialises in ferrite products for the automotive industry. This facility has a sintering capacity of 1,200 metric tons a year.
- **2016** Estiblished a experimental line for high purity SiC powder.
- **2017** Estiblished a experimental line for ceramic inject molding.
- **2018** A high-purity SiC powder mass production line was established and mass production was successful.
- **2021** Metal soft magnetic products in powder cores, nanocrystalline ribbon wound cores and others were launched.

Kuan-Yin Factory, Taiwan

Aggressively Committed to Manufacturing Excellence

Ferrite

Sv	mbols and	Definitions	2
ој. N/	stanial Cha	nostomistics	~
IVI a	ateriai Cha		0
	MnZn- Conv	entional Low Loss - P4, P41, P42, P48	10
	MnZn- Wide	temp. Low Loss - P45, P451, P452, P47	10
	MnZn- High	Bs - P49, P491	11
	MnZn- High	Frequency Low Loss - P5, P51, P52, P53, P61, P63	11
	MnZn- Conv	rentional Hign μ for CWI Chokes - A10, A121, A13, A151	12
	MnZn- Wide	Band Filter - AU5, AU6, AU7, AU71, A102	12
	MnZn- High	$\mu \propto 1c$ for Automotives - A0/2, A104	13
	MnZn- High	μ wide Temperature - A044, A064, N10	13
	MnZn-For V	vide Temp. LAN - A043, A062, N07	14
	MnZn-Low	1HD - A101	14
	MnZn-Low	Filter N5	15
	Ni Zn Auto	Filler - NJ	15
	K081	, K10, K12, K13, K15, K151, K20, K25	16
	Ni-Zn-Autor	motive EMI Suppression -	
	D1C,	, D25, D27, D28, D30, D35, D37, D40	16
	Ni-Zn- Conv	rentional High Bs - A30, A31, A40, A50	17
	Ni-Zn-Autor	motive High Bs - B25, B30, B40, B45, B60, B90	17
	Ni-Zn- Low	Permeability - L1, L2, L3, L4, L5, L6	18
	Ni-Zn-Rod	Core For Antenna -	
	H2, F	13, H3A, H3B, H4, H5, H5M, H5R, H5N	18
	Ni-Zn- Wide	Temperature RFID - F10, F52, F80, F100	19
	MgZn- EMI	Filter - M80	19
Pr	oduct Spec	ifications	104
Mr	1-Zn Ferrite		10.
	CI	Cores (Power Inductor)	104
	EFD	Cores	108
	EPC	Cores	116
	ER	Cores	118
	ERX	Cores	126
	EPO	Cores	127
	EP	Cores	128
	POT	Cores	120
	PEI	Cores (Planner Core)	134
	PO	Cores	136
	RM/LM	Cores	138
	EE/EEL	Cores	140
	EF	Cores	146
	RF	Cores	148
	UR	Cores	149
	UU	Cores	150
	I	Cores	152
	R	Cores	154
		Cores	150
	KID ET	Cores	157
		Cores	150
	URT	Cores	160
	Т	Cores	162
	RH	Cores	182
λ <i>ι</i> :	Zu Famita		
[V1-	D	Cores	18/
	SC	Cores	185
	RID	Cores	186
	R	Cores (Multi Aperture)	187
	AR	Cores	188
	FC	Cores	189
	Ι	Cores (Plates)	190
	Ι	Cores	191
	POT	Cores	192
	Т	Cores (EMI Suppression)	193
	T	Cores	194
	кн	Cores	200

INTRODUCTION TO FERRITES

Ferrites are categorized as electroceramics with ferrimagnetic properties.

Due to superexchange interactions between the electrons of metal and oxygen ions ferrites behave ferrimagnetism. The less parallel spin alignment in ferrites results lower magnetization compared to ferromagnetic metals in which the spin moments are oriented parallel to one another. Due to the intrinsic interactions between oxygen and metal ions in atomic level, ferrites possess higher resistivity in comparison to ferromagnetic metals. This makes ferrites considerably useful in a wide range of applications at higher frequencies and technologically very valuable. The crystal structure of ferrites is formed with spinel lattice having the chemical formula MeFe₂O₄ where Me represents a divalent metal ion (e.g. Fe²⁺, Ni²⁺, Mn²⁺, Mg²⁺, Co²⁺, Zn²⁺, Cu²⁺ etc.). Nowadays the most popular compounds of commercial ferrites are MnZnFe₂O₄ and NiZnFe₂O₄ with major difference in resistivity between each other. The material properties illustrated in the data sheets are defined by toroidal cores for each material grad.

The Spinel Lattice:

The following figure shows a unit cell of the spinel lattice and the sites of various ions. The spinel structure consists of a number of interlaced face-centered cubic lattices. These interlaced lattices are called sub-lattices and they play an important role in the magnetism of ferrites. In a unit cell of spinel crystal structure of ferrites, one metal ion (e.g. Fe^{2+} , Ni^{2+} , Mn^{2+} etc.) is on tetrahedral (A) site and two (e.g. Fe^{3+} , Zn^{2+}) are on octahedral (B) sites. If the spinel were 'normal', the divalent Me ion would occupy the A site while the trivalent Fe ions would occupy the B sites. In an 'inverse' spinel the divalent Me ion occupies one of the B sites while the trivalent Fe ions occupy the other B site and the A site. Many of the commercially important ferrites, such as MnZn-ferrites and NiZn-ferrites, are 'inverse' spinels. In ferrite manufacturing both composition and process conditions are crucial to get the required properties.

Ferrimagnetism:

Ferrimagnetism is the term proposed by Néel to describe the magnetism of ferrites. Ferrites behave ferrimagnetism due to the fact that there are net magnetic moments in molecular level as a result of the electronic interactions, called superexchange, between metal and oxygen ions. In a bulk ferrite, the crystallite is normally divided into a number of magnetic domains (known as Weiss domains) of various spin orientations, so that there is very little external field arising from the internal magnetization in the crystallite of ferrite polycrystalline structures, i.e. the demagnetizing fields are small. If a magnetic field is applied to the ferrite bulk along it's magnetic path, the movements of the domain walls which are irreversible will occur. Due to the irreversible domain wall movements the magnetization will always lag behind the magnetizing field and an open loop will be traced, known as magnetic hysteresis, and the loop is called a hysteresis loop.

O 0xygen

• B-atoms octahedral sites

A-atoms tetrahedral sites

MAGNETIC PROPERTIES

This section is devoted to a brief glimpse of some important features of MnZn-ferrites and NiZn-ferrites for our valued customers.

1. B-H HYSTERESIS LOOP

It is more usual to consider the dependence of the flux density on field strength. If an alternating field is applied to a soft magnetic material, a hysteresis loop will be obtained. Such a B-H curve

is shown behind. If the field strength is large enough to make the material magnetization unable to increase further, the maximum attainable flux density is then reached. This is known as the **saturation flux density**, Bs. If the field is removed, the material returns to a state where a certain flux density remains. The intercept of the hysteresis loop with the B-axis is referred to as the **remanence**, Br, of the material, while the intercept with the H-axis is referred to as the **coercivity, Hc**.

The ease with which the magnetization may be changed by a given magnetic field depends on the anisotropy and the movement of domain wall pinned by the imperfection of the polycrystalline structure, i.e. magnetic stiffness. The energy consumed to overcome the internal magnetic stiffness during the cyclic magnetization process is indicated by the area of the B-H loop and is called **hysteresis loss**.

2. MAGNETIZATION

Under the influence of an applied field (*H*) the magnetic moment of the ions comprising the material are re-orientated, either by the growth and contraction of the various domains, so that ionic moments effectively augment the applied field. This increase in magnetic field is called the magnetization (*M*) and it is expressed in A/m (unit in **SI** hereafter). The resulting flux density (*B*) is composed of that of free space plus the contribution of the magnetization due to the aligned domains in the material and can be expressed as $B = \mu_0$ (*H*+*M*) where $\mu_0 = 4\pi \times 10^{-7}$ H/m. The quotient of flux density and applied field is called **absolute permeability** denoted by μ :

$$\mu = \frac{B}{H} = \mu_{\rm o} \left(1 + \frac{M}{H} \right)$$

The absolute permeability is normally expressed as the product of the magnetic constant of free space, μ_0 , and the **relative permeability**, μ_r :

$$\mu = \mu_{\rm o} \cdot \mu_{\rm r}$$
 where
$$\mu_{\rm r} = 1 + \frac{M}{H} = 1 + \chi_r$$

In the above equation χ_r is the **relative susceptibility** used normally to classify the various kinds of magnetism (e.g. diamagnetism, paramagnetism, antiferromagnetism and ferrimagnetism). Since there are a variety of qualifying subscripts of relative permeability correlated with testing conditions, it is then convenient to drop 'relative' so that the index 'r' is generally replaced by the applicable symbol e.g. μ_i , μ_a , μ_{Δ} etc. for each specific behavior under the concerned testing conditions.

3. PERMEABILITY

The **initial permeability**, μ_i , is measured in a closed magnetic circuit, usually a toroidal core, at very low field strength, ΔH , without bias:

$$\mu_{\rm i} = \frac{1}{\mu_{\rm o}} \times \left(\frac{\Delta B}{\Delta H}\right)_{\Delta H \to 0}$$

Sometimes for the application purpose the core has to be gapped. The effect of an air gap is to change the horizontal scale of the B-H relation of a given core so that the B-H loop is less inclined relative to the horizontal, and this is consistent with a reduction of the concerned permeability at the same test condition. This effect is referred to as the shearing of the B-H relation and applies to both initial magnetization and the hysteresis loop. In such a case the **effective permeability**, μ_e , is introduced as follows:

$$\mu_{\rm e} = \frac{\mu_{\rm i}}{1 + \frac{G \cdot \mu_{\rm i}}{l_e}}$$

Where G is the air gap and l_e is the effective magnetic path length. The relationship between higher field strength, \hat{H} , and flux densities, \hat{B} , without the presence of a bias field is given by the **amplitude permeability**, μ_a :

$$\mu_{\rm a} = \frac{1}{\mu_{\rm o}} \times \left(\frac{\hat{B}}{\hat{H}}\right)$$

When an alternating magnetic field is superimposed on a static bias field, H_{DC} , the permeability observed is called **incremental permeability**, μ_{Δ} :

 $\mu_{\Delta} = \frac{1}{\mu_{\rm o}} \times \left(\frac{\Delta B}{\Delta H}\right)_{H_{\rm DC}}$

If the amplitude of the alternating field ΔH is negligibly small, the permeability is then called **reversible permeability**, μ_{rev} . Once the bias H_{DC} approximates to 0, the reversible permeability will revert to initial permeability. The behavior of the reversible permeability is normally shown in the characteristic curves with the subject of 'Permeability v.s. DC Bias field' for the metal dust cores featuring distributed gap.

4. INDUCTANCE FACTOR

To make the calculation of the inductance of a coil more convenient, the inductance factor, known as the *AL* value, is given in the data sheets (unit in nH: nano-Henry). The inductance of the wound core then can be defined as follows,

 $L = N^2 \times AL$

where *N* is the winding turns of the coil. *AL* value is calculated using the effective core parameters (A_e and l_e) and the initial or effective permeability:

$$AL = \frac{\mu_{\rm o}\mu_{\rm i} \cdot A_{\rm e}}{l_{\rm e}}$$

where A_e and l_e for the specific core type can be found in the data sheets. For the gapped ferrite cores and metal dust cores, the μ_i will be replaced by μ_e .

5. DISACCOMMODATION FACTOR

If a magnetic material is given a disturbance, which may be magnetic, thermal or mechanical, the initial permeability observed right after the cessation of the disturbance is normally found to be raised to an unstable value from which it returns to its stable value as a function of time. This phenomenon is usually referred to as **disaccommodation**. There are a number of possible mechanisms of disaccommodation in ferrites and they all depend on migratory processes within the lattices of the polycrystalline structure. These processes often involve the anisotropy or preferred distribution of ferrous ions and/or cation vacancies over the four octahedral sublattices of the spinel lattice. Because it is observed that the change of permeability is approximately proportional to the logarithm of time, the IEC Technical Committee 1 (Terminology) defines a **disaccommodation coefficient** of permeability as

$$d = \frac{\mu_1 - \mu_2}{\mu_1 \cdot \log_{10}\left(\frac{t_2}{t_1}\right)}$$

where t_1 and t_2 are arbitrary but defined time intervals after the disturbance. And the **disaccommodation factor** is defined as

$$D_F = \frac{d}{\mu_1}$$

6. TEMPERATURE FACTOR

The permeability of a magnetic material may change for a variety of reasons. The most obvious cause of variation is the change of temperature. Over a limited temperature range the reversible variation of permeability with temperature can be described by a **temperature coefficient**, α_{μ} :

$$\alpha_{\mu} = \frac{\Delta \mu}{\sqrt{\mu_1 \mu_2} \cdot \Delta \mathrm{T}}$$

where μ_1 and μ_2 are the permeability measured at different temperature. If the range of temperature, ΔT , is small and $\Delta \mu / \sqrt{\mu_1 \mu_2}$ is not appreciable, the above expression can be simplified as:

$$\alpha_{\mu} = \frac{\Delta \mu}{\mu \cdot \Delta T}$$

When an air gap is inserted into a magnetic circuit so that the permeability is reduced to the effective value, μ_e , the effect of permeability variations are reduced in the ratio μ_e/μ_i . It is then convenient to divide the temperature coefficient by μ_i so that the temperature coefficient of effective permeability at gapped condition can be obtained by simply multiplying the new factor by μ_e . The new factor designated as **temperature factor of reluctivity** by IEC Technical Committee 1 has the symbol α_F :

$$\alpha_{\rm F} = \frac{\Delta \mu_{\rm i}}{\mu_{\rm i}^2 \cdot \Delta {\rm T}} \text{ or } \frac{\Delta \mu}{\mu_1 \mu_2 \cdot \Delta {\rm T}}$$

Normally the initial permeability rises with temperature until it reaches a peak just below the Curie temperature, T_c . Over the T_c the permeability falls abruptly to values approaching unity due to disordering of magnetic moments by thermal energy and the material becomes paramagnetic.

7. COMPLEX PERMEABILITY

The equivalent circuit model is normally used to characterize the properties of electronic components. There are two approaches to describe the behavior of inductors with ignorance of winding resistance and parasitic capacitance so that the concerned properties of magnetic core materials can be realized. One is series mode with R_s and L_s where R_s is the series core loss resistance and L_s is the series inductance. The alternative is parallel mode with R_p and L_p where R_p is the parallel core loss resistance and L_p is the parallel inductance. Both of the two approaches are equivalent but the mathematical process of the series mode is more brief. Thus, the series mode is adopted to characterize the low-amplitude properties by most of the ferrite manufacturers.

The preliminary theory of inductance may be defined by the linkage of magnetic flux change by applying the alternating current in the coil:

$$L = \frac{N \cdot \Delta \emptyset}{\Delta I}$$

where $\Delta \phi$ is the variation of the flux induced in the wound coil with *N* turns by applying the alternating current, ΔI , on the wire. The basic inductance formula can be rewritten as follows,

$$L = N^2 \cdot \frac{A_{\rm e}}{l_{\rm e}} \cdot \frac{\Delta B}{\Delta H} = \frac{\mu_{\rm o} \cdot \mu_{\rm r} \cdot N^2 \cdot A_{\rm e}}{l_{\rm e}} = L_{\rm o} \cdot \mu_{\rm r}$$

where L_0 is the virtual inductance and supposed to be measured if the core had unity permeability with the flux distribution in its original magnetic circuit remaining unchanged. The unit of inductance *L* is in Henry(H), A_e in meter square(m²), l_e in meter(m) and $\mu_0 = 4\pi \times 10^{-7}$ H/m. The total impedance of the inductance circuit model in series mode is the combination of pure inductive reactance and core loss resistance:

$$Z = j\omega L_{\rm s} + R_{\rm s} \,(\text{unit in }\Omega)$$

where the angular frequency, ω , equals $2\pi f$ with the frequency unit in Hertz (Hz). In comparison to the inductive reactance, $j\omega L_s = j\omega L_o \cdot \mu_r$, the impedance can be rewritten as follows,

$$Z = j\omega L_{o} \left(\mu_{r} - j \frac{R_{s}}{\omega L_{o}} \right) = j\omega L_{o} \left(\mu_{s}' - j \mu_{s}'' \right)$$

where μ'_s , the real part of the complex permeability, equals μ_r and μ''_s , the imaginary part of the complex permeability, equals $R_s/\omega L_o$. The form of complex permeability is obtained. The impedance value can be calculated as follows,

$$|Z| = \omega L_{\rm o} \sqrt{{\mu_{\rm s}^\prime}^2 + {\mu_{\rm s}^\prime\prime}^2}$$

It then can be realized that the core loss related part, μ_s'' , plays one of the crucial roles of impedance behavior as well. The above equation provides a convenient way to check the impedance spectrum through the concerned material grade by complex permeability, core geometry by A_e/l_e and winding turns by *N* with the ignorance of parasitic effects due to winding.

8. RESONANT FREQUENCY

In the complex permeability spectrum of μ'_s and μ''_s it normally can be observed that μ_s'' rises to a pronounced peak as μ_s' falls. This dispersion is mainly due to dimensional resonance and ferromagnetic resonance. Concerning the dimensional resonance, the high values of permeability and permittivity (in a typical MnZn-ferrite, $\varepsilon_r = 10^5$) of ferrites give rise to standing electromagnetic waves within the ferrite if the smallest crosssectional dimension of the ferrite core is half the wave length. Under this condition the net reactive flux is zero and it leads to $\mu'_{\rm s}$ dropping down to zero at certain frequency. As to ferromagnetic resonance (spin precession resonance) due to the fact that the origin of ferromagnetism is not an orbital motion but a spin motion of the electron, the atomic magnetic moment has angular momentum which is similar to the behavior of a top. When a spinning top is placed in a gravitational field, it precesses. This phenomenon is called gyromagnetic effect. It is found that the frequency of ferromagnetic resonance varies inversely as the initial permeability, known as Snoek's law. The frequency at which μ_s'' rises to the maximum is about the one that ferromagnetic resonance occurs.

For practical inductor measurement, as the frequency increases the measured inductance might remain level at first and then rise to a sharp peak before falling rapidly to negative values. The frequency at which the inductance swing happens is called **self-resonant frequency** of an inductor and is normally lower than the dimensional and ferromagnetic resonance frequency of the core. The self-resonant frequency is mainly due to winding parasitic/stray capacitance of the coil. To avoid the influence of self-resonance phenomenon on measurement, the IEC

publication (IEC 62044-2) specifies the testing frequency to be far below the self-resonant frequency of the wound cores.

9. LOSS TANGENT

At the condition of low-amplitude measurement the common methods to indicate ferrite performance as a function of frequency is to characterize not only the complex permeability but also the value of $\tan \delta_m$, known as loss tangent. The total magnetic loss tangent can be expressed as follows,

$$\tan \delta_{\rm m} = \frac{R_{\rm s}}{\omega L_{\rm s}} = \frac{\mu_{\rm s}^{\prime\prime}}{\mu_{\rm s}^{\prime}}$$

where δ_m is the loss angle, i.e. the phase angle between *B* and *H*. There are also some standard expressions on the quotient of loss angle and permeability, called **loss factors** by IEC Technical Committee 51 as follows,

$$\frac{\tan \delta_{\rm m}}{\mu} = \frac{\tan \delta_{\rm h}}{\mu} + \frac{\tan \delta_{\rm F}}{\mu} + \frac{\tan \delta_{\rm r}}{\mu}$$

where the total loss factor is the sum over hysteresis loss, eddy current loss and residual loss factors respectively.

10. QUALITY FACTOR

To characterize the circuit/network performance the quality factor (Q-factor hereafter) is normally used as one of the important measures. Through the inductance circuit model in series or parallel mode the Q-factor of wire-wound magnetic cores can be defined as follows,

$$Q = \frac{\omega L_s}{R_s} = \frac{R_p}{\omega L_p}$$

which is just the inverse of loss tangent. For practical inductors the term $R_{s/p}$ involves the winding resistance as well. As a result of that, Q-factor is dependent on the testing frequency, winding condition and core loss.

11. RESISTIVITY

The resistivity, ρ , of ferrites ranging from 1Ω -m to greater than $10^{6}\Omega$ -m is dependent on the chemical compounds. NiZnferrites feature high resistivity (> $10^{6}\Omega$ -m) while MnZn-ferrites behave much lower span over several Ω -m. The partial shortcircuit due to electron hopping between the grain boundaries of polycrystalline ferrites creates significant eddy current loss at high frequencies and gives rise to dispersion of permeability, resulting the reduction of impedance. This phenomenon normally happens to MnZn-ferrites featuring much lower impedance at high frequencies. The DC resistivity of each material grade shown in the data sheets is measured at room temperature.

12. CORE CONSTANTS

A recent IEC publication (IEC 60205) lists standard formulae for calculating core constants and effective dimensions for a number of widely used core shapes. For a non-uniform core, an equivalent ideal toroid is introduced hypothetically to get effective core parameters, A_e and l_e , through its core constants:

$$C_1 = \sum_i \frac{l_i}{A_i}$$
 and $C_2 = \sum_i \frac{l_i}{A_i^2}$

These constants give rise to the calculation of $A_e = C_1/C_2$ and $l_e = C_1^2/C_2$. C_1 is also used to calculate inductance factor of a core configuration without gap through

$$AL(\mathrm{nH}) = \frac{4\pi\mu_{\mathrm{i}} \cdot 10^{-1}}{\mathrm{C}_{\mathrm{1}}}$$

with the unit of C_1 in mm⁻¹. If air gap is concerned, μ_i should be replaced by μ_e in the above equation.

FERRITE MANUFACTURING PROCESS

Ferrite cores are manufactured to meet the requirements of customers. The effect of the process variables on the properties of ferrite pieces have always been a subject of great importance. The major factors include the purity of the constituent oxides, their proportions and homogeneity in the powder mix and the control of temperature and atmosphere during sintering.

Manufacturing flow sheet

MnZn-ferrite power materials

Features	Grade	Initial Permeability μ_i	Saturation Flux Density Bs (mT)	Remanence Br (mT)	Coercivity Hc (A/m)	Curie Temperature Tc (°C)	$\begin{array}{c} \text{Resistivity} \\ \rho\left(\Omega \cdot \mathbf{m} \right) \end{array}$	Page
	P4	2500	480	135	14	220	5.50	20
Conventional Low Loss	P41	2400	495	170	13	230	4.00	21
Conventional Low Loss	P42	1800	520	230	13	240	8.00	22
	P48	2500	515	150	13	220	5.00	23
	P45	3100	530	80	8	215	5.00	24
Wide temp Low Loss	P451	3800	540	70	8	215	5.00	25
white temp. Low Loss	P452	3000	520	100	13	215	5.00	26
	P47	3000	520	100	11	220	5.00	27
High Da	P49	1700	540	280	15	280	3.00	28
riigii bs	P491	1500	600	140	21	300	5.00	29
	P5	2000	470	135	17	220	6.40	30
	P51	1500	490	215	35	250	12.00	31
High Frequency Low Log	P52	2000	500	140	21	250	6.50	32
Figh Frequency Low Loss	P53	1200	515	180	38	280	10.00	33
	P61	900	515	200	50	280	10.00	34
	P63	900	540	205	50	280	10.00	35

MnZn-ferrite hi-permeability materials

Features	Grade	Initial Permeability µ _i	Saturation Flux Density Bs (mT)	Remanence Br (mT)	Temperature Factor <i>Q</i> _F (x10-6/°C)	Curie Temperature Tc (°C)	$\begin{array}{c} \text{Resistivity} \\ \rho\left(\boldsymbol{\Omega}\cdot\mathbf{m} \right) \end{array}$	Page
	A10	10000	410	140	-0.5~1	130	0.15	36
Conventional High μ for CM	A121	12000	380	130	-0.5~1	110	0.12	37
Chokes	A13	12000	400	120	-1~1	125	0.15	38
	A151	15000	400	220	-1~1	110	0.10	39
	A05	5000	440	80	0~2	140	0.20	40
	A06	6000	420	70	0~2.5	140	0.20	41
Wide Band Filter	A07	7000	400	150	-1~1	130	0.35	42
	A071	7000	440	80	-1~1	145	0.35	43
	A102	10000	380	95	-1~1	120	0.15	44
High y & To for Automotives	A072	7000	485	95	-1.5~1.5	180	0.20	45
High $\mu \approx 1c$ for Automotives	A104	10000	460	105	-1.5~0	155	0.15	46
	A044	4000	450	55	-1~1	170	1.00	47
High μ Wide Temperature	A064	6000	470	135	-1~1	170	1.00	48
	N10	10000	380	160	-1~1	100	0.12	49

MnZn-ferrite telecommunication materials

Features	Grade	Initial Permeability µ _i	Saturation Flux Density Bs (mT)	Remanence Br (mT)	Loss Factor tanδ/μ (x10 ⁻⁶)	Curie Temperature Tc (°C)	$\begin{array}{c} \text{Resistivity} \\ \rho\left(\boldsymbol{\Omega}\cdot\mathbf{m} \right) \end{array}$	Page
	A043	4500	460	65	<10	160	0.20	50
For Wide Temp. LAN	A062	6000	460	100	<30	160	0.20	51
	N07	7000	400	70	<30	130	0.15	52
Low THD	A101	10000	400	175	<90	130	0.15	53
	N4	2500	450	180	<3	170	7.50	54
Low $\eta_{\rm B}$	N42	3800	530	100	<2.5	250	5.00	55
	N43	750	490	400	<15	250	2.00	56

MnZn-ferrite EMI suppression materials

Features	Grade	Initial Permeability μ_i	Saturation Flux Density Bs (mT)	Remanence Br (mT)	Temperature Factor 𝑉 _F (x10 ^{-6/°} C)	Curie Temperature Tc (°C)	$\begin{array}{c} \text{Resistivity} \\ \rho\left(\boldsymbol{\Omega}\cdot\mathbf{m} \right) \end{array}$	Page
EMI Filter	N5	2000	370	240	<1.1	130	140	57

NiZn-ferrite EMI suppression materials

Features	Grade	Initial Permeability μ_i	Saturation Flux Density Bs (mT)	Remanence Br (mT)	Coercivity Hc (A/m)	Curie Temperature Tc (°C)	$\begin{array}{c} \text{Resistivity} \\ \rho\left(\boldsymbol{\Omega}\cdot\mathbf{m} \right) \end{array}$	Page
	K081	800	400	280	21	190	106	58
	K10	1000	355	250	19	160	106	59
	K12	1200	355	250	12	160	106	60
Automotive EMI	K13	1300	340	190	16	150	106	61
Suppression	K15	1500	330	200	11	130	106	62
	K151	1500	290	150	20	110	106	63
	K20	2000	300	150	11	100	106	64
	K25	2500	275	170	14	90	106	65
	D1C	350	360	255	31	160	106	66
	D25	500	390	260	58	180	106	67
	D27	700	365	235	20	150	106	68
Automotive EMI	D28	800	365	180	26	150	106	69
Suppression	D30	1000	340	115	28	140	106	70
	D35	1100	305	140	22	120	106	71
	D37	1500	290	150	20	110	106	72
	D40	2000	275	115	8	90	106	73
	A30	300	435	300	68	250	106	74
Conventional High Ba	A31	300	435	180	52	250	106	75
Conventional ringh bs	A40	400	430	320	62	250	106	76
	A50	500	330	125	56	150	106	77
	B25	250	445	320	95	250	106	78
	B30	300	470	250	80	300	106	79
Automotive High De	B40	400	430	300	45	240	106	80
Automotive riigh bs	B45	450	450	270	49	240	106	81
	B60	600	430	300	40	210	106	82
	B90	900	390	250	38	180	106	83
	L1	150	410	170	105	250	106	84
	L2	60	420	275	140	250	106	85
I ow Pormoability	L3	20	305	120	600	300	106	86
Low I effication	L4	50	395	255	200	300	106	87
	L5	100	390	175	140	250	106	88
	L6	14	265	175	1540	300	106	89

NiZn-ferrite RFID/antenna materials

Features	Grade	Initial Permeability µ _i	Saturation Flux Density Bs (mT)	Remanence Br (mT)	Coercivity Hc(A/m)	Curie Temperature Tc (°C)	$\begin{array}{c} \text{Resistivity} \\ \varrho(\Omega \cdot m) \end{array}$	Page
	H2	50	400	195	155	300	106	90
	H3	100	330	225	95	250	106	91
	H3A	125	320	235	80	230	106	92
	H3B	150	330	245	90	220	106	93
Rod Core For Antenna	H4	300	330	205	55	160	106	94
	Н5	250	410	295	40	250	106	95
	H5M	230	430	250	75	280	106	96
	H5R	200	400	290	55	240	106	97
	H5N	300	390	260	155	200	106	98
	F10	100	330	185	220	170	106	99
Wide Temperature DFID	F52	500	330	150	70	140	106	100
while remperature KFID	F80	800	360	155	45	150	106	101
	F100	1000	335	140	33	130	106	102

MgZn-ferrite EMI suppression materials

Features	Grade	Initial Permeability μ_i	Saturation Flux Density Bs (mT)	Remanence Br (mT)	Coercivity Hc (A/m)	Curie Temperature Tc (°C)	$\begin{array}{c} \text{Resistivity} \\ \rho\left(\boldsymbol{\Omega}\cdot\mathbf{m} \right) \end{array}$	Page
EMI Filter	M80	800	315	215	17	140	106	103

Material Characteristics (1)

	Symbol	Unit	Meas	suring Condi	tions	Conventional Low Loss Materials				
	Symbol		Freq.	Flux den.	Temp.	P4	P41	P42	P48	
Initial Permeability	μ_i		≤ 10kHz	0.25mT	25°C	$2500\pm25\%$	$2400\pm25\%$	$1800 \pm 25\%$	$2500\pm25\%$	
Amplitude Permeshility	11		25kHz	200mT	25°C	> 4500	> 4500	> 5000	> 5000	
Amplitude Termeability	pra		251112	200111	100°C	> 4500	> 4500	> 5000	> 5000	
			25kHz	200mT	25°C	105	125	125	-	
			2.5KIIL	200111	100°C	55	50	50	-	
			100kHz	200mT	25°C	630	650	750	550	
Power Loss	Pv	KW/m ³	TOOKITZ	200111	100°C	450	350	350	250	
	1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	300kHz	100mT	25°C	660	820	900	570	
			JUOKIIZ	1001111	100°C	430	500	500	330	
			500kHz	50mT	25°C	380	400	450	250	
			JOOKITZ	50111	100°C	330	300	300	200	
Saturation Flux Density	Bs	mT	10kHz	H = 1200 A/m	25°C	480	495	520	515	
Saturation Flux Density	103	1111	TOKITZ	Iz 0.25mT 25°C 2500 $\pm 25\%$ 2400 $\pm 25\%$ 1800 $\pm 25\%$ z 200mT $\frac{25°C}{10°C}$ > 4500 > 4500 > 5000 z 200mT $\frac{25°C}{10°C}$ > 4500 > 4500 > 5000 z 200mT $\frac{25°C}{10°C}$ 105 125 125 z 200mT $\frac{25°C}{10°C}$ 630 650 750 Jz 200mT $\frac{25°C}{10°C}$ 630 650 750 Jz 200mT $\frac{25°C}{10°C}$ 660 820 900 Juo°C 430 500 500 500 Jz 50mT $\frac{25°C}{10°C}$ 380 400 450 Juo°C 330 300 300 300 300 z H = 1200A/m $\frac{25°C}{10°C}$ 135 170 230 z H = 1200A/m $\frac{25°C}{10°C}$ 14 13 13 z A 10°°C 9 6 8 z I.5-3.0mT 25°C <1.2	420	410				
Remanence	Br	mT	10kHz	H = 1200 A/m	25°C	135	170	230	150	
Kemanence	DI	1111	TUKITZ	11 - 1200/1/11	100°C	75	55	60	55	
Coercivity	He	A/m	10kHz	H – 1200A/m	25°C	14	13	13	13	
Coercivity	IIC		TURITZ	11 - 1200/1/11	100°C	9	6	8	6	
Hysteresis Material Constant	ηв	10-6/mT	10kHz	1.5-3.0mT	25°C	< 1.2	< 1	< 1	< 1	
Disaccommodation Factor	DF	10-6	10kHz	< 0.25 mT	25°C	< 2	< 2	< 2	< 2	
Curie Temperature	Tc	°C				≥ 220	≥ 230	≥ 240	≥ 220	
Resistivity	ρ	Ωm				5.50	4.00	8.00	5.00	
Density	d	g/cm ³				4.80	4.85	4.90	4.90	

Note: Material characteristics are typical for a toroid core.

Product specification will differ from these data due to the influence of geometry and size.

Material Characteristics (2)

	Symbol	Unit	Meas	suring Condi	tions	Wide Temperature Low Loss Materials			
	Symbol	Omt	Freq.	Flux den.	Temp.	P45	P451	P452	P47
Initial Permeability	μı		≤ 10kHz	0.25mT	25°C	$3100 \pm 25\%$	$3800\pm25\%$	$3000 \pm 25\%$	$3000 \pm 25\%$
Amplitude Permeshility	11		25kHz	200mT	25°C	> 5000	> 5000	> 3900	> 4500
Ampitude I et meability	μa			2001111	100°C	> 5000	> 5000	> 4450	> 4500
			100kHz	200mT	25°C	360	270	310	340
			TOOKITZ	200111	100°C	260	310	380	350
Power Loss	Pv	KW/m ³	3001/117	100mT	25°C	400	295	300	350
Tower Loss		K W/III ²	JUOKIIL	1001111	100°C	350	385	260	350
			500kHz	50mT	25°C	200	165	100	230
			JOOMIE	50111	100°C	200	230	120	230
Saturation Flux Donsity	Be	s mT	10kHz	H = 1200 A/m	25°C	530	540	520	520
Saturation Flux Density	13		TORITZ	11 - 120010111	100°C	405	420	415	420
Domononco	Br	mT	10kHz	H = 1200A/m	25°C	80	70	100	100
Kemanence	DI	1111			100°C	50	40	80	70
Coorcivity	На	۸/m	101/11-7	H = 1200 A/m	25°C	8	8	13	11
Coercivity	IIC	A/111	IUNIIZ	11 – 1200/4/11	100°C	5	6	11	8
Hysteresis Material Constant	ηв	10-6/mT	10kHz	1.5-3.0mT	25°C	< 0.6	< 0.6	< 0.6	< 0.6
Disaccommodation Factor	DF	10-6	10kHz	< 0.1 mT	25°C	< 1	< 1	< 1	< 1
Curie Temperature	Tc	°C				≥ 215	≥ 215	≥ 215	≥ 220
Resistivity	ρ	Ωm				5.00	5.00	5.00	5.00
Density	d	g/cm ³				4.90	4.90	4.85	4.90

Note: Material characteristics are typical for a toroid core.

Material Characteristics (3)

	Symbol	Unit	Mea	suring Condi	tions	High Bs I	Materials
	Symbol	Unit	Freq.	Flux den.	Temp.	P49	P491
Initial Permeability	μ_i		≤ 10kHz	0.25mT	25°C	1700 ± 25%	$1500 \pm 25\%$
			25kHz	200mT	25°C	-	160
			2.5K112	200111	100°C	-	240
Power Loss	Du	KW/m^3	1001/11-7	200mT	25°C	800	900
I Ower Loss	1 V	K W/III	TOOKITZ	200111	100°C	400	1390
			500kHz	50mT	25°C	450	250
				50111	100°C	220	560
Saturation Flux Donsity	Be	mT	101/日7	H = 1200 A/m	25°C	540	600
Saturation Flux Density	DS	1111	TOKITZ	11 - 1200/0/11	100°C	460	500
Domononco	Br	mT	101/日7	H = 1200 A/m	25°C	280	140
Kemanence	DI	1111	TURITZ	II – 1200A/III	100°C	50	235
Coorcivity	На	A/m	101/11-7	H = 1200 A/m	25°C	15	21
Coercivity	пс	A/III	IUKIIZ	П – 1200А/Ш	100°C	7	20
Curie Temperature	Tc	°C				≥ 280	≥ 300
Resistivity	ρ	Ωm				3.00	5.00
Density	d	g/cm ³				4.90	4.90

Note: Material characteristics are typical for a toroid core.

Product specification will differ from these data due to the influence of geometry and size.

Material Characteristics (4)

	Symbol	Unit	Meas	suring Condi	tions	High Frequency Low Loss Materials					
	Symbol	Unit	Freq.	Flux den.	Temp.	P5	P51	P52	P53	P61	P63 (EV)
Initial Permeability	μι		≤ 10kHz	0.25mT	25°C	$2000\pm25\%$	$1500\pm25\%$	$2000\pm25\%$	$1200 \pm 25\%$	900 ± 25%	$900 \pm 25\%$
Amplitude Permeshility	11		25kHz	200mT	25°C	> 4000	> 2500	> 4000	> 1900	> 1700	> 1700
Amplitude I el meability	μa		2JKIIZ	2001111	100°C	> 4000	> 2500	> 4000	> 2000	> 1800	> 1800
			300kHz	100mT	25°C	600	410	510	350	-	-
			JOOKITZ	100111	100°C	350	370	450	310	-	-
			500kHz	50mT	25°C	220	200	150	80	-	-
			JOOKITZ	50111	100°C	250	100	140	60	-	-
			700kHz	50mT	25°C	600	300	300	-	-	-
					100°C	550	250	350	-	-	-
			1MHz	50mT	25°C	-	600	750	300	250	80
Power Loss	Pv	KW/m ³		U U U U U	100°C	-	600	1000	300	110	80
			2MHz	80mT	25°C	-	-	-	-	-	1600
					100°C	-	-	-	-	-	2000
			3MHz 3MHz	10mT 30mT	25°C	-	-	-	-	50	20
					100°C	-	-	-	-	50	20
					25°C	-	-	-	-	450	200
				9mT	100°C	-	-	-	-	370	250
			5MHz		25°C	-	-	-	-	150	80
					100°C	-	-	-	-	170	80
Saturation Flux Density	Bs	mT	10kHz	H = 1200A/m	25°C	470	490	500	515	515	540
					100°C	350	400	400	420	430	450
Remanence	Br	mT	10kHz	H = 1200A/m	25°C	135	215	140	180	200	205
					100°C	70	125	110	120	135	115
Coercivity	Hc	A/m	10kHz	H = 1200A/m	25°C	1/	35	21	38	50	50
Herein Marial Constant	n	10.6/m T	101-11-	1520mT	100°C	10	27	18	33	40	40
Hysteresis Material Constant		10°/m1	101-11-	1.3-3.0m1	25 C	< 1	< 1	< 1	<1	< 1	< 1
Disaccommodation Factor	DF T-	10"	IUKHZ	< 0.25 ml	25°C	< 2	< 2	< 2	<2	< 2	< 2
Curie Temperature	lc	- (≥ 220	≥ 230 12.00	≥ 230	≥ 280	≥ 280	≥ 280
Kesisuvity	<u>β</u>	<u>\$2</u> III				0.40	12.00	0.30	10.00	10.00	10.00
Density	a	g/cm ³				4.70	4.85	4.85	4.80	4.80	4.80

Note: Material characteristics are typical for a toroid core.

Material	Characteristics	(5)
----------	-----------------	-----

	Symbol	Unit	Meas	suring Cond	litions	Conventional High μ For CM Chokes Materials					
	Symbol	Omt	Freq.	Flux den.	Temp.	A10	A121	A13	A151		
Initial Permeability	μ_i		≤10kHz	0.25mT	25°C	$10000\pm30\%$	$12000\pm30\%$	$12000\pm30\%$	$15000\pm30\%$		
Relative Loss Factor	$tan\delta/\mu$.	10-6	10kHz	< 0.25mT	25°C	< 10	< 10	< 8	< 10		
		10	100kHz	< 0.25m1	25°C	< 60	< 60	< 40	< 110		
Saturation Flux Density	Bs	т	10kHz	H = 1200 A/m	25°C	410	380	400	400		
Suturation Thux Density	103	IIII	TOKITZ	11 - 1200/1/11	100°C	210	180	200	170		
Remanence	Br	mT	10kHz	H - 1200A/m	25°C	140	130	120	220		
	Di			11 12001111	100°C	110	110	65	100		
Temperature Factor of	0.	10-6/°C	10kHz	$< 0.25 \mathrm{mT}$	$0\sim 20^{\circ}C$	0~1.5	0~1.5	1~3	-1 ~ 1		
Permeability	WF	10 / 0	TOKITZ	< 0.25 mi	$20\sim 70^{\circ}C$	-0.5 ~ 1	-0.5 ~ 1	-1 ~ 1	-1 ~ 1		
Hysteresis Material Constant	η_{B}	10-6/mT	10kHz	1.5-3.0mT	25°C	< 0.5	< 0.5	< 0.5	< 0.5		
Disaccommodation Factor	DF	10-6	10kHz	< 0.25 mT	25°C	< 2	< 2	< 2	< 2		
Curie Temperature	Tc	°C				≥ 130	≥ 110	≥ 125	≥ 110		
Resistivity	ρ	Ωm				0.15	0.12	0.15	0.10		
Density	d	g/cm ³				4.90	4.90	4.90	5.00		

Remark: Best impedance, and permeability v. s. frequency performance for 10,000 μ_{f} materials. Note: Material characteristics are typical for a toroid core.

Product specification will differ from these data due to the influence of geometry and size.

Material Characteristics (6)

	Symbol	Unit	Meas	suring Cond	itions	Wide Band Filter Materials						
	Symbol	Umt	Freq.	Flux den.	Temp.	A05	A06 • EW	A07	A071	A102		
Initial Permeability	μ_i		≤10kHz	0.25mT	25°C	5000 ± 25%	6000 ± 25%	7000 ± 25%	$7000\pm25\%$	$10000 \pm 30\%$		
Polativa Loss Factor	tan δ/u	10-6	10kHz	< 0.25mT	25°C	< 4	< 4	< 8	< 8	< 10		
Relative Loss Factor	tano/µ2	10	100kHz	0.25111	25°C	< 15	< 15	< 30	< 30	< 60		
Saturation Flux Donsity	Be	mT	101/11-7	H = 1200 A/m	25°C	440	420	400	440	380		
Saturation Flux Density	13	1111	TOKITZ	11 - 120070/11	100°C	300	280	200	280	180		
Remanence	Br	mT	10kHz	H = 1200A/m	25°C	80	70	150	80	95		
					100°C	90	80	110	60	75		
Temperature Factor of	a	10-6/°C	101/11-7	< 0.25 mT	$0 \sim 20^{\circ} C$	0~2	0~2.5	-1~1	-1~1	-1 ~ 1		
Permeability	ULF	10 / C	TOKTIZ	< 0.25 mi	$20 \sim 70^\circ C$	$0 \sim 2$	0~2.5	-1~1	-1~1	-1 ~ 1		
Hysteresis Material Constant	η	10-6/mT	10kHz	1.5-3.0mT	25°C	< 0.8	< 0.8	< 1.2	< 1.2	< 1		
Disaccommodation Factor	DF	10-6	10kHz	< 0.25 mT	25°C	< 3	< 3	< 2	< 2	< 2		
Curie Temperature	Tc	°C				≥ 140	≥ 140	≥ 130	≥ 145	≥ 120		
Resistivity	ρ	Ωm				0.20	0.20	0.35	0.35	0.15		
Density	d	g/cm ³				4.85	4.85	4.90	4.90	4.90		

Note: Material characteristics are typical for a toroid core.

Material Characteristics (7)

	Symbol	Unit –	Mea	suring Condi	tions	High μ & Tc For Au	tomotives Materials
	Symbol	Cint	Freq.	Flux den.	Temp.	A072 (NEW)	A104
Initial Permeability	μ_i		≤10kHz	0.25mT	25°C	$7000\pm25\%$	10000 ±30%
	. 51	10.6	10kHz	0.05 T	25°C	< 5	< 10
Relative Loss Factor	$\tan 0/\mu_i$	10-0	100kHz	< 0.25m1	25°C	< 15	< 30
	D	mT	101-11-	H 1200 A /	25°C	485	460
Saturation Flux Density	BS		IUKHZ	П – 1200А/Ш	100°C	340	295
n	D	T	101 11	H 1000 A /	25°C	95	105
Remanence	Br	mI	IUKHZ	п = 1200А/Ш	100°C	80	105
Temperature Factor of		10.000	101 11	0.25 T	$0 \sim 20^{\circ} C$	1.5 ~ 3.5	1 ~ 3
Permeability	$lpha_{ m F}$	10-%°C	IUKHZ	< 0.25 m l	$20\sim 70^{\circ} C$	-1.5 ~ 1.5	-1.5 ~ 0
Hysteresis Material Constant	$\eta_{\scriptscriptstyle B}$	10-6/mT	10kHz	1.5-3.0mT	25°C	< 1.0	< 0.5
Disaccommodation Factor	DF	10-6	10kHz	< 0.25 mT	25°C	< 1.0	< 2.0
Curie Temperature	Tc	°C				≥ 180	≥ 155
Resistivity	ρ	Ωm				0.20	0.15
Density	d	g/cm ³				4.90	4.90

Note: Material characteristics are typical for a toroid core.

Product specification will differ from these data due to the influence of geometry and size.

Measuring Conditions High *µ* Wide Temperature Materials Symbol Unit Freq. Flux den. Temp. A044 A064 N10 **Initial Permeability** ≤10kHz 0.25mT 25°C $4000\pm25\%$ $6000\pm25\%$ $10000\pm30\%$ μi -20°C > 9000 -_ 25°C 10kHz < 8 < 8 < 10 **Relative Loss Factor** $\tan \delta/\mu_i$ 10-6 < 0.25mT 100kHz 25°C < 40 < 40 < 90 25°C 450 470 380 Bs mТ 10kHz H = 1200 A/m**Saturation Flux Density** 100°C 315 330 130 25°C 55 160 135 10kHz H = 1200 A/mRemanence Br mТ 100°C 45 115 110 $0\sim 20^{\circ}C$ $-1 \sim 1$ $-1 \sim 1$ $-1 \sim 0$ **Temperature Factor of** 10-6/°C 10kHz < 0.25 mT $\alpha_{\rm F}$ $20\sim 70^\circ C$ Permeability $-1 \sim 1$ $-1 \sim 1$ $-1 \sim 1$ 25°C **Hysteresis Material Constant** η_{B} 10-6/mT 10kHz 1.5-3.0mT < 0.5 < 0.5 < 0.5 10-6 < 0.25 mT 25°C **Disaccommodation Factor** D_{F} 10kHz < 2 < 2 < 2 °C Tc ≥ 170 ≥ 170 ≥ 100 **Curie Temperature** Resistivity ρ Ωm 1.00 1.00 0.12 4.90 4.90 5.00 Density d g/cm³

Material Characteristics (8)

Note: Material characteristics are typical for a toroid core.

Material Characteristics (Mn-Zn Ferrite)

Material Characteristics (9)

	Symbol	Unit	Mea	suring Condi	tions	For Wide Temperature LAN Materials				
	Symbol	Omt	Freq.	Flux den.	Temp.	A043	A062	N07		
Initial Permeability	μ_i		≤10kHz	0.25mT	25°C	$4500\pm25\%$	$6000\pm25\%$	$7000\pm25\%$		
Polotivo Loss Factor	ton 8/11	10-6	10kHz	< 0.25mT	25°C	< 10	< 10	< 5		
Relative Loss Factor	tano/µi	10 -	100kHz	< 0.25111	25°C	< 10	< 30	< 30		
Saturation Flux Donsity	Be	mT	101/11-2	H = 1200 A/m	25°C	460	460	400		
Saturation Flux Density	102	1111	IUKIIZ	H = 1200A/III	100°C	300	320	220		
Domononco	D.	r mT	101/11-2	H = 1200 A/m	25°C	65	100	70		
Remanence	DI		TOKITZ	11 - 1200/1/11	100°C	60	80	60		
Temperature Factor of	0	10-6/°C	101-11-	< 0.25 mT	$0\sim 20^{\circ}C$	$1 \sim 2$	1~3	-1 ~ 1		
Permeability	α _F	10 % C	IUKIIZ	< 0.23 III1	$20 \sim 70^{\circ} C$	-1 ~ 1	-1 ~ 1	-1 ~ 1		
Hysteresis Material Constant	$\eta_{\scriptscriptstyle B}$	10-6/mT	10kHz	1.5-3.0mT	25°C	< 0.5	< 0.5	< 0.2		
Disaccommodation Factor	DF	10-6	10kHz	< 0.25 mT	25°C	< 2	< 2	< 2		
Curie Temperature	Тс	°C				≥ 160	≥ 160	≥ 130		
Resistivity	ρ	Ωm				0.20	0.20	0.15		
Density	d	g/cm ³				4.85	4.85	4.90		

Note: Material characteristics are typical for a toroid core.

Product specification will differ from these data due to the influence of geometry and size.

Material Characteristics (10)

	Symbol	Unit	Mea	suring Condi	tions	Low THD Material		
	Symbol	Unit	Freq.	Flux den.	Temp.	A101		
Initial Permeability	μ_i		≤10kHz	0.25mT	25°C	$10000 \pm 30\%$		
		10.4	10kHz	0.05 T	25°C	< 10		
Relative Loss Factor	tanð/µ:	10-6	100kHz	<pre>< 0.25mT</pre>	25°C	< 90		
	D	E.	101 11	II. 1000.4./	25°C	400		
Saturation Flux Density	Bs	ml	IUKHZ	n = 1200A/m	100°C	220		
D	D	F	101 11	II. 1000.4./	25°C	175		
Remanence	Br	mI	I0kHz	H = 1200A/III	100°C	125		
Temperature Factor of		10 (/00	101 11	0.05 T	$0\sim 20^{\circ}C$	-1 ~ 1		
Permeability	$lpha_{ m F}$	10-%/°C	I0kHz	< 0.25 mT	$20\sim 70^{\circ}C$	-1 ~ 1		
Hysteresis Material Constant	$\eta_{\scriptscriptstyle B}$	10-6/mT	10kHz	1.5-3.0mT	25°C	< 0.2		
Disaccommodation Factor	DF	10-6	10kHz	< 0.25 mT	25°C	< 2		
Curie Temperature	Tc	°C				≥ 130		
Resistivity	ρ	Ωm				0.15		
Density	d	g/cm ³				4.90		

Remark: Best THD performance for 10,000µż materials.

Note: Material characteristics are typical for a toroid core.

Material Characteristics (11)

	Symbol	Unit –	Mea	suring Condi	tions		Low η_{B} Materials	
	Symbol	Oint	Freq.	Flux den.	Temp.	N4	N42	N43
Initial Permeability	μ_i		≤10kHz	0.25mT	25°C	$2500\pm25\%$	$3800 \pm 25\%$	$750 \pm 25\%$
	. 51	10-6	10kHz	0.05 T	25°C	< 7	< 3.5	< 60
Relative Loss Factor	tano/µ:	10	100kHz	< 0.25m1	25°C	< 3	< 3.5	< 15
	D	T	101.11-	II. 1000 A./	25°C	450	530	490
Saturation Flux Density	BS	mı	IUKHZ	H = 1200A/m	100°C	320	425	400
n	D	т	101 11	II. 1000A/	25°C	180	100	400
Remanence	Br	mI	IUKHZ	H = 1200A/m	100°C	150	125	325
	IJ		10kHz	II. 1000A/	25°C	14	9	35
Coercivity	Hc	A/m		H = 1200 A/m	100°C	9	13	21
Temperature Factor of		10.000	101 11	0.25 T	5 ~ 25°C	< 1.3	7~9	< 2.2
Permeability	$\alpha_{\rm F}$	10-%/°C	I0kHz	< 0.25 mT	25 ~ 55°C	< 1.3	-4 ~ -2	< 1.8
Hysteresis Material Constant	$\eta_{\scriptscriptstyle B}$	10-6/mT	10kHz	1.5-3.0mT	25°C	< 0.6	< 0.3	< 2.5 ^(100kHz)
Curie Temperature	Tc	°C				≥ 170	≥ 250	≥ 250
Resistivity	ρ	Ωm				7.50	5.00	2.00
Density	d	g/cm ³				4.70	4.90	4.70

Note: Material characteristics are typical for a toroid core.

Product specification will differ from these data due to the influence of geometry and size.

Material Characteristics (12)

	Symbol	Unit –	Mea	suring Condi	tions	EMI Filter Material
	Symbol	Unit	Freq.	Flux den.	Temp.	N5
Initial Permeability	μ_i		≤10kHz	0.25mT	25°C	$2000 \pm 25\%$
	. 51	10.6	10kHz	0.05 T	25°C	< 1.24
Relative Loss Factor	tano/µ:	10-0	100kHz	< 0.25m1	25°C	< 23
	D	T	101-11-	II. 1200 A /	25°C	370
Saturation Flux Density	BS	mı	IUKHZ	H = 1200A/m	100°C	285
D	D	T	101 11	II. 1000 A./	25°C	240
Remanence	DI	mı	IUKHZ	H = 1200A/m	100°C	140
a	TT		101 11	II. 1000 A./	25°C	-
Coercivity	Hc	A/m	I0kHz	H = 1200 A/m	100°C	-
Temperature Factor of		10.000	101 11	0.05	$5 \sim 25^{\circ} \mathrm{C}$	< 1.1
Permeability	$lpha_{ m F}$	10-%/°C	I0kHz	< 0.25 mT	25 ~ 55°C	< 5.8
Hysteresis Material Constant	$\eta_{\scriptscriptstyle B}$	10-6/mT	10kHz	1.5-3.0mT	25°C	< 0.36
Curie Temperature	Tc	°C				≥ 130
Resistivity	ρ	Ωm				140
Density	d	g/cm ³				4.95

Note: Material characteristics are typical for a toroid core.

Material Characteristics (Ni-Zn Ferrite)

	Symbol	Unit	Mea	suring Con	ditions	Automotive EMI-Suppression Materials							
	Symbol	Umt	Freq.	Flux den.	Temp.	K081	K10	K12	K13 🖤	K15	K151	K20	K25 🖤
Initial Permeability	μ_i		≤10kHz	0.25mT	25°C	800 ± 25%	1000 ± 25%	1200 ± 25%	1300 ± 25%	1500 ± 25%	1500 ± 25%	2000 ± 25%	2500 ± 25%
	D	m	101.11	H = 4000A/m	0.000	400	355	-	-	-	-	-	-
Saturation Flux Density	Bs	mT	10kHz	H = 1200A/m	25°C	-	-	355	340	330	290	300	275
D	D	m	101.11	H = 4000A/m	0.500	280	250	-	-	-	-	-	-
Remanence	Br	mT	10kHz	H = 1200A/m	25°C	-	-	250	190	200	150	150	170
a	Нс	A/m	10kHz	H = 4000A/m	25°C	21	19	-	-	-	-	-	-
Coercivity				H = 1200A/m		-	-	12	16	11	20	11	14
Relative Loss Factor	$tan\delta/\mu_i$	10-6	100kHz	< 0.25mT	25°C	17	11	13	15	11	10	11	15
Temperature Factor of		10 (10 C	101.11	0.05 5	00 (000	8	8	11	8	6	4	3	3
Permeability	α _F	10-6/°C	10kHz	< 0.25 mT	20 ~ 60°C								
Curie Temperature	Tc	°C				≥ 190	≥ 160	≥ 160	≥ 150	≥ 130	≥ 110	≥ 100	≥ 90
Resistivity	ρ	Ωm				> 10 ⁶	> 10 ⁶	> 10 ⁶	> 10 ⁶	> 10 ⁶	> 10 ⁶	> 10 ⁶	> 10 ⁶
Density	d	g/cm ³				5.10	5.10	5.10	5.10	5.10	5.10	5.10	5.10

Material Characteristics (13)

Note: Material characteristics are typical for a toroid core.

Product specification will differ from these data due to the influence of geometry and size.

Material Characteristics (14)

	Symbol	Unit	Mea	suring Con	ditions	Automotive EMI-Suppression Materials							
	Symbol	Omt	Freq.	Flux den.	Temp.	D1C	D25	D27	D28	D30	D35	D37 🕬	D40
Initial Permeability	μ_i		≤10kHz	0.25mT	25°C	350 ± 25%	500 ± 25%	700 ± 25%	800 ± 25%	1000 ± 25%	1100 ± 25%	1500 ± 25%	2000 ± 25%
Seturation Flux Density	Da	т	101/11-	H = 4000A/m	2500	360	390	365	365	340	-	-	-
Saturation Flux Density	DS	111 1	IUKIIZ	H = 1200A/m	25 C	-	-	-	-	-	305	290	275
Remanence	Da	т	101 11	H = 4000A/m	2500	255	260	235	180	115	-	-	-
Kemanence	DI	111 1	IUKIIZ	H = 1200A/m	25 C	-	-	-	-	-	140	150	115
Coorcivity	Нс	A/m	10kHz	H = 4000A/m	2500	31	58	20	26	28	-	-	-
Coercivity				H = 1200A/m	23 C	-	-	-	-	-	22	20	8
Deleting Long Frederic	4	10-6	0.1MHz	.0.25 mT	25%	-	-	20	20	35	20	10	18
Relative Loss Factor	$tano/\mu_i$	10-0	1MHz	< 0.25m1	25 C	30	248	-	-	-	-	-	-
Temperature Factor of	a	10-6/°C	101/11-	< 0.25mT	$20 \sim 80^\circ C$	≤ 50	≤ 35	≤7	≤ 5	≤6	≤2	≤4	≤ 20
Permeability	ULF .	10 % C	IUKIIZ	< 0.251111	-50 ~ 80°C	-	-	-	≤ 1.5	-	-	-	-
Curie Temperature	Tc	°C				≥ 160	≥ 180	≥ 150	≥ 150	≥ 140	≥ 120	≥ 110	≥ 90
Resistivity	ρ	Ωm				> 10 ⁶	> 10 ⁶	> 10 ⁶	> 10 ⁶	> 10 ⁶	> 10 ⁶	> 10 ⁶	> 10 ⁶
Density	d	g/cm ³				5.00	5.00	4.80	5.00	5.00	5.00	5.00	5.00

Note: Material characteristics are typical for a toroid core.

	Symbol	Unit -	Meas	suring Condi	tions	Conventional High Bs Materials					
	Symbol	Unit	Freq.	Flux den.	Temp.	A30	A31	A40	A50		
Initial Permeability	μι		≤10kHz	0.25mT	25°C	$300\pm25\%$	$300\pm25\%$	$400\pm25\%$	$500\pm25\%$		
Saturation Flux Density	Bs	mT	10kHz	H =4000A/m	25°C	435	435	430	330		
Remanence	Br	mT	10kHz	H = 4000A/m	25°C	300	180	320	125		
Coercivity	Нс	A/m	10kHz	H = 4000A/m	25°C	68	52	62	56		
			0.1MHz			-	-	-	30		
Relative Loss Factor	tanð/µ₁	10-6	0.4MHz	< 0.25mT	25°C	-	50	-	-		
			1MHz			40	-	35	-		
Temperature Factor of		10-6/90	101-11-	. 0. 25 mT	20 202	- 25	- 25	- 20	1 5		
Permeability	α _F	10-9 C	IUKHZ	< 0.25 m1	20~ 80 C	≤ 23	≤ 23	≤ 20	1~3		
Curie Temperature	Тс	°C				≥ 250	≥ 250	≥ 250	≥ 150		
Resistivity	ρ	Ωm				> 10 ⁶	> 10 ⁶	> 10 ⁶	> 10 ⁶		
Density	d	g/cm ³				5.00	5.00	5.00	5.00		

Material Characteristics (15)

Note: Material characteristics are typical for a toroid core.

Product specification will differ from these data due to the influence of geometry and size.

Material Characteristics (16)

	Symbol	Unit	Mea	suring Con	ditions	Automotive High Bs Materials						
	Symbol	Unit	Freq.	Flux den.	Temp.	B25	B30	B40	B45	B60	B90	
Initial Permeability	μ_i		≤10kHz	0.25mT	25°C	$250\pm25\%$	300 ± 25%	$400\pm25\%$	450 ± 25%	$600\pm25\%$	900 ± 25%	
Saturation Flux Density	Bs	mT	10kHz	H = 4000A/m	25°C	445	470	430	450	430	390	
Remanence	Br	mT	10kHz	H = 4000A/m	25°C	320	250	300	270	300	250	
Coercivity	Нс	A/m	10kHz	H = 4000A/m	25°C	95	80	45	49	40	38	
Relative Loss Factor	$tan\delta/\mu_i$	10-6	100kHz	< 0.25mT	25°C	70	60	40	40	25	13	
Temperature Factor of Permeability	$\alpha_{\rm F}$	10-6/°C	10kHz	< 0.25 mT	20 ~ 60°C	12	16	10	15	12	8	
Curie Temperature	Тс	°C				≥ 250	≥ 300	≥ 240	≥ 240	≥ 210	≥ 180	
Resistivity	ρ	Ωm				> 106	> 106	> 106	> 106	> 106	> 106	
Density	d	g/cm ³				5.20	5.20	5.20	5.20	5.20	5.20	

Note: Material characteristics are typical for a toroid core.

	Symbol	Unit	Mea	suring Con	ditions	Low Permeability Materials						
	Symbol	Unit	Freq.	Flux den.	Temp.	L1	L2	L3	L4	L5	L6	
Initial Permeability	μ_i		≤10kHz	0.25mT	25°C	150 ± 25%	$60\pm25\%$	$20\pm25\%$	$50\pm25\%$	$100\pm25\%$	14 ± 25%	
Saturation Flux Density	Bs	mT	10kHz	H = 4000A/m	25°C	410	420	305*	395	390	265*	
Remanence	Br	mT	10kHz	H = 4000A/m	25°C	170	275	120*	255	175	175*	
Coercivity	Нс	A/m	10kHz	H = 4000A/m	25°C	105	140	600*	200	140	1540*	
Relative Loss Factor	$tan\delta/\mu_i$	10-6	10MHz	< 0.25mT	25°C	180**	150	445	170	350**	705	
Curie Temperature	Tc	°C				≥ 250	≥ 250	≥ 300	≥ 300	≥ 250	≥ 300	
Resistivity	ρ	Ωm				> 106	> 10 ⁶					
Density	d	g/cm ³				5.10	5.10	5.10	5.10	5.10	5.10	

Material Characteristics (17)

* Measuring Conditions H=8000A/m

** Measuring Conditions Freq.=100KHz

Note: Material characteristics are typical for a toroid core.

Product specification will differ from these data due to the influence of geometry and size.

			Mea	suring Con	ditions			For	Rod Co	re Antei	na Mat	erials		
	Symbol	Unit	ivica					101	Kou Co					
			Freq.	Flux den.	Temp.	H2	H3	H3A	H3B	H4	H5	H5M	H5R	H5N
Initial Permeability	μι		≤10kHz	0.25mT	25°C	50 ± 25%	100 ± 25%	125 ± 25%	150 ± 25%	300 ± 25%	$250\pm25\%$	$230\pm25\%$	$200\pm25\%$	$300\pm25\%$
Relative Loss Factor	tanδ/μ2	10-6	1MHz		25°C	185	70	110	70	35	75	50	40	475
	D	т	10kHz		25°C	400	330	320	330	330	410	430	400	390
Saturation Flux Density De	BS	mı		H = 4000A/m	100°C	350	275	260	270	240	345	365	330	310
Remanence Br	Da	T	101.11	H = 4000A/m	25°C	195	225	235	245	205	295	250	290	260
	БГ	mı	IUKHZ		100°C	195	180	175	185	130	200	180	210	185
Coonsister	IIa	A /m	10kHz	H = 4000A/m	25°C	155	95	80	90	55	40	75	55	155
Coercivity	пс	A/III			100°C	120	65	50	60	35	30	60	35	125
Temperature Factor of														
Permeability	$\alpha_{\rm F}$	10-6/°C			20 ~ 80°C	100	80	110	60	100	40	30	25	≤ 5
Curie Temperature	Тс	°C				≥ 300	≥ 250	≥ 230	≥ 220	≥ 160	≥ 250	≥ 280	≥ 240	≥ 200
Resistivity	ρ	Ωm				> 10 ⁶								
Density	d	g/cm ³				5.10	4.80	4.60	4.80	4.80	5.10	5.10	5.10	5.00

Material Characteristics (18)

Note: Material characteristics are typical for a toroid core.

Material Characteristics (19)

	Symbol	Unit	Mea	suring Condi	tions	Wide Temperature RFID Materials				
	Symbol	Oint	Freq.	Flux den.	Temp.	F10	F52	F80	F100	
Initial Permeability	μ_i		≤10kHz	0.25mT	25°C	$100 \pm 25\%$	$500\pm25\%$	800 ± 25%	$1000\pm25\%$	
Saturation Flux Density	Bs	mT	10kHz	H = 4000A/m	25°C	330	330	360	335	
Remanence	Br	mT	10kHz	H = 4000A/m	25°C	185	150	155	140	
Coercivity	Нс	A/m	10kHz	H = 4000A/m	25°C	220	70	45	33	
Polotivo Loss Factor	tan δ/u	10-6	0.1MHz	- <0.25mT	25°C	-	20	20	16	
Relative Loss Factor	$\tan \theta/\mu_i$		1MHz		25 C	55	-	-	-	
Temperature Factor of	a	10-6/°C	101/14-7	< 0.25mT	$20 \sim 60^{\circ} C$	-	1~2	-1 ~ 1	-1 ~ 1	
Permeability	U.F	10 % C	IUMIL	< 0.25111	20 ~ 80°C	≤ 35	-	-	-	
Curie Temperature	Тс	°C				≥ 170	≥ 140	≥ 150	≥ 130	
Resistivity	ρ	Ωm				> 10 ⁶	> 10 ⁶	> 10 ⁶	> 10 ⁶	
Density	d	g/cm ³				5.10	5.10	5.10	5.10	

Note: Material characteristics are typical for a toroid core.

Product specification will differ from these data due to the influence of geometry and size.

Material Characteristics (20)

	Symbol	Unit	Mea	suring Condi	tions	EMI-Filter Material
	Symbol	Ont	Freq.	Flux den.	Temp.	M80
Initial Permeability	μ		≤10kHz	0.25mT	25°C	800 ± 25%
Saturation Flux Density	Bs	mT	10kHz	H = 4000A/m	25°C	315
Remanence	Br	mT	10kHz	H = 4000A/m	25°C	215
Coercivity	Нс	A/m	10kHz	H = 4000A/m	25°C	17
Relative Loss Factor	tanδ/µ₂	10-6	100kHz	< 0.25mT	25°C	19
Temperature Factor of Permeability	$lpha_{ m F}$	10-6/°C	10kHz	< 0.25 mT	20 ~ 60°C	10
Curie Temperature	Tc	°C				≥ 140
Resistivity	ρ	Ωm				> 10 ⁶
Density	d	g/cm ³				5.10

Note: Material characteristics are typical for a toroid core.

Initial Permeability

Power Loss

Remanence

Coercivity

Resistivity

Density

Amplitude Permeability

Conventional Low Loss Material Measuring Conditions Symbol Unit Freq. Flux den. P4 Temp. ≤ 10kHz 0.25mT 25°C 2500 ± 25% μ_{i} 25kHz 25°C > 4500 200mT μ_{a} 100°C > 4500 Pv KW/m3 25kHz 200mT 25°C 105 100°C 100kHz 200mT 25°C 100°C 300kHz 100mT 25°C

55 630 450 660 100°C 430 25°C 500kHz 50mT 380 100°C 330 Saturation Flux Density Bs mТ 10kHz H = 1200 A/m25°C 480 100°C 380 Br mТ 10kHz H = 1200 A/m25°C 135 100°C 75 Hc 10kHz H = 1200A/m 25°C 14 A/m 100°C 9 Hysteresis Material Constant 10-6/mT 10kHz 1.5-3.0mT 25°C < 1.2 $\eta_{\rm B}$ Disaccommodation Factor 10-6 10kHz < 0.25 mT 25°C < 2 DF Curie Temperature Tc ≥ 220 °C

Note: Material characteristics are typical for a toroid core.

ρ

d

Product specification will differ from these data due to the influence of geometry and size.

Ωm

g/cm³

Amplitude Permeability V.S. Flux Density (Bm)

Saturation Flux Density V.S. Magnetic Field

20

5.50

4.80

	Symbol	Unit	Mea	suring Condi	tions	Conventional Low Loss Material		
	Symbol	Omt	Freq.	Flux den.	Temp.	P41		
Initial Permeability	μ_{i}		$\leq 10 \mathrm{kHz}$	0.25mT	25°C	2400 ± 25%		
Amplitude Permeability	$\mu_{\rm a}$		25kHz	200mT	25°C	> 4500		
					100°C	> 4500		
Power Loss	Pv	KW/m ³	25kHz	200mT	25°C	125		
					100°C	50		
			100kHz	200mT	25°C	650		
					100°C	350		
			300kHz	100mT	25°C	820		
					100°C	500		
			500kHz	50mT	25°C	400		
					100°C	300		
Saturation Flux Density	Bs	mT	10kHz	H = 1200 A/m	25°C	495		
					100°C	395		
Remanence	Br	mT	10kHz	H = 1200 A/m	25°C	170		
					100°C	55		
Coercivity	Hc	A/m	10kHz	H = 1200 A/m	25°C	13		
					100°C	6		
Hysteresis Material Constant	η₅	10-6/mT	10kHz	1.5-3.0mT	25°C	< 1		
Disaccommodation Factor	DF	10-6	10kHz	< 0.25 mT	25°C	< 2		
Curie Temperature	Tc	°C				≥ 230		
Resistivity	ρ	Ωm				4.00		
Density	d	g/cm ³				4.85		

Note: Material characteristics are typical for a toroid core.

Amplitude Permeability V.S. Flux Density (Bm)

Power Loss V.S. Temperature

Saturation Flux Density V.S. Magnetic Field

	Symbol	Unit	Mea	suring Condi	tions	Conventional Low Loss Material
	Symbol	Cint	Freq.	Flux den.	Temp.	P42
Initial Permeability	μ_i		$\leq 10 \mathrm{kHz}$	0.25mT	25°C	1800 ± 25%
Amplitude Permeability	$\mu_{\rm a}$		25kHz	200mT	25°C	> 5000
					100°C	> 5000
Power Loss	Pv	KW/m ³	25kHz	200mT	25°C	125
					100°C	50
			100kHz	200mT	25°C	750
					100°C	350
			300kHz	100mT	25°C	900
					100°C	500
			500kHz	50mT	25°C	450
					100°C	300
Saturation Flux Density	Bs	mT	10kHz	H = 1200 A/m	25°C	520
					100°C	420
Remanence	Br	mT	10kHz	H = 1200 A/m	25°C	230
					100°C	60
Coercivity	Hc	A/m	10kHz	H = 1200 A/m	25°C	13
					100°C	8
Hysteresis Material Constant	$\eta_{^{B}}$	10-6/mT	10kHz	1.5-3.0mT	25°C	< 1
Disaccommodation Factor	DF	10-6	10kHz	< 0.25 mT	25°C	< 2
Curie Temperature	Tc	°C				≥ 240
Resistivity	ρ	Ωm				8.00
Density	d	g/cm ³				4.90

Note: Material characteristics are typical for a toroid core.

Amplitude Permeability V.S. Flux Density (Bm)

Power Loss V.S. Temperature

Saturation Flux Density V.S. Magnetic Field

	Symbol	Unit	Mea	suring Condi	tions	Conventional Low Loss Material	
	Symbol	Omt	Freq.	Flux den.	Temp.	P48	
Initial Permeability	μ_{i}		$\leq 10 \mathrm{kHz}$	0.25mT	25°C	$2500\pm25\%$	
Amplitude Permeability	$\mu_{\rm a}$		25kHz	200mT	25°C	> 5000	
					100°C	> 5000	
Power Loss	Pv	KW/m ³	100kHz	200mT	25°C	550	
					100°C	250	
			300kHz	100mT	25°C	570	
					100°C	330	
			500kHz	50mT	25°C	250	
					100°C	200	
Saturation Flux Density	Bs	mT	10kHz	H = 1200 A/m	25°C	515	
					100°C	410	
Remanence	Br	mT	10kHz	H = 1200 A/m	25°C	150	
					100°C	55	
Coercivity	Hc	A/m	10kHz	H = 1200A/m	25°C	13	
					100°C	6	
Hysteresis Material Constant	$\eta_{^{B}}$	10-6/mT	10kHz	1.5-3.0mT	25°C	< 1	
Disaccommodation Factor	DF	10-6	10kHz	< 0.25 mT	25°C	< 2	
Curie Temperature	Tc	°C				≥ 220	
Resistivity	ρ	Ωm				5.00	
Density	d	g/cm ³				4.90	

Note: Material characteristics are typical for a toroid core.

Product specification will differ from these data due to the influence of geometry and size.

Amplitude Permeability V.S. Flux Density (Bm)

Power Loss (KW/m³) 100mT,300KHz 200mT,100KHz 100mT,200KHz Temperature (°C) Test Core: T25*15*10

Power Loss V.S. Temperature

Saturation Flux Density V.S. Magnetic Field

	Symbol	Unit	Mea	suring Condi	tions	Wide Temperature Low Loss Material	
	Symbol	Cint	Freq.	Flux den.	Temp.	P45	
Initial Permeability	μ_i		≤ 10kHz	0.25mT	25°C	3100 ± 25%	
Amplitude Permeability	μ_{a}		25kHz	200mT	25°C	> 5000	
					100°C	> 5000	
Power Loss	Pv	KW/m ³	100kHz	200mT	25°C	360	
					100°C	260	
			300kHz	100mT	25°C	400	
					100°C	350	
			500kHz	50mT	25°C	200	
					100°C	200	
Saturation Flux Density	Bs	mT	10kHz	H = 1200 A/m	25°C	530	
					100°C	405	
Remanence	Br	mT	10kHz	H = 1200 A/m	25°C	80	
					100°C	50	
Coercivity	Hc	A/m	10kHz	H = 1200 A/m	25°C	8	
					100°C	5	
Hysteresis Material Constant	$\eta_{^{B}}$	10-6/mT	10kHz	1.5-3.0mT	25°C	< 0.6	
Disaccommodation Factor	DF	10-6	10kHz	< 0.25 mT	25°C	< 1	
Curie Temperature	Tc	°C				≥ 215	
Resistivity	ρ	Ωm				5.00	
Density	d	g/cm ³				4.90	

Note: Material characteristics are typical for a toroid core.

Amplitude Permeability V.S. Flux Density (Bm)

Power Loss V.S. Temperature

Saturation Flux Density V.S. Magnetic Field

	Symbol	Unit	Mea	suring Condi	tions	Wide Temperature Low Loss Material
	Symbol	Cint	Freq.	Flux den.	Temp.	P451
Initial Permeability	μ_t		≤ 10kHz	0.25mT	25°C	3800 ± 25%
Amplitude Permeability	$\mu_{\rm a}$		25kHz	200mT	25°C	> 5000
					100°C	> 5000
Power Loss	Pv	KW/m ³	100kHz	200mT	25°C	270
					100°C	310
			300kHz	100mT	25°C	295
					100°C	385
			500kHz	50mT	25°C	165
					100°C	230
Saturation Flux Density	Bs	mT	10kHz	H = 1200 A/m	25°C	540
					100°C	420
Remanence	Br	mT	10kHz	H = 1200 A/m	25°C	70
					100°C	40
Coercivity	Hc	A/m	10kHz	H = 1200 A/m	25°C	8
					100°C	6
Hysteresis Material Constant	η _в	10-6/mT	10kHz	1.5-3.0mT	25°C	< 0.6
Disaccommodation Factor	DF	10-6	10kHz	< 0.25 mT	25°C	< 1
Curie Temperature	Tc	°C				≥ 215
Resistivity	ρ	Ωm				5.00
Density	d	g/cm ³				4.90

Note: Material characteristics are typical for a toroid core.

Amplitude Permeability V.S. Flux Density (Bm)

Power Loss V.S. Temperature

Saturation Flux Density V.S. Magnetic Field

	Symbol	Unit	Mea	suring Condi	tions	Wide Temperature Low Loss Material
	Symbol	Cint	Freq.	Flux den.	Temp.	P452
Initial Permeability	μ_i		≤ 10kHz	0.25mT	25°C	3000 ± 25%
Amplitude Permeability	μ_{a}		25kHz	200mT	25°C	> 3900
					100°C	> 4450
Power Loss	Pv	KW/m ³	100kHz	200mT	25°C	310
					100°C	380
			300kHz	100mT	25°C	300
					100°C	260
			500kHz	50mT	25°C	100
					100°C	120
Saturation Flux Density	Bs	mT	10kHz	H = 1200 A/m	25°C	520
					100°C	415
Remanence	Br	mT	10kHz	H = 1200 A/m	25°C	100
					100°C	80
Coercivity	Hc	A/m	10kHz	H = 1200 A/m	25°C	13
					100°C	11
Hysteresis Material Constant	η _в	10-6/mT	10kHz	1.5-3.0mT	25°C	< 0.6
Disaccommodation Factor	DF	10-6	10kHz	< 0.25 mT	25°C	< 1
Curie Temperature	Tc	°C				≥ 215
Resistivity	ρ	Ωm				5.00
Density	d	g/cm ³				4.85

Note: Material characteristics are typical for a toroid core.

Amplitude Permeability V.S. Flux Density (Bm)

Power Loss V.S. Temperature 600 500 Power Loss (KW/m³) 400 200mT,100KHz 300 100mT,300KHz 200 50mT,500KHz 100 0 40 60 80 100 120 140 Temperature (°C) Test Core: T25*15*10

Saturation Flux Density V.S. Magnetic Field

	Symbol	Unit	Mea	suring Condi	tions	Wide Temperature Low Loss Material
	Symbol	Omt	Freq.	Flux den.	Temp.	P47
Initial Permeability	μ_i		$\leq 10 \mathrm{kHz}$	0.25mT	25°C	3000 ± 25%
Amplitude Permeability	$\mu_{\rm a}$		25kHz	200mT	25°C	> 4500
					100°C	> 4500
Power Loss	Pv	KW/m ³	100kHz	200mT	25°C	340
					100°C	350
			300kHz	100mT	25°C	350
					100°C	350
			500kHz	50mT	25°C	230
					100°C	230
Saturation Flux Density	Bs	mT	10kHz	H = 1200 A/m	25°C	520
					100°C	420
Remanence	Br	mT	10kHz	H = 1200 A/m	25°C	100
					100°C	70
Coercivity	Hc	A/m	10kHz	H = 1200A/m	25°C	11
					100°C	8
Hysteresis Material Constant	η_{B}	10-6/mT	10kHz	1.5-3.0mT	25°C	< 0.6
Disaccommodation Factor	DF	10-6	10kHz	< 0.25 mT	25°C	< 1
Curie Temperature	Tc	°C				≥ 220
Resistivity	ρ	Ωm				5.00
Density	d	g/cm ³				4.90

Note: Material characteristics are typical for a toroid core.

Amplitude Permeability V.S. Flux Density (Bm)

Power Loss V.S. Temperature 600 500 Power Loss (KW/m³) 400 200mT,100KHz 300 100mT,300KHz 200 100 50mT,500KHz 0 40 60 80 100 120 Temperature (°C) Test Core: T25*15*10

Saturation Flux Density V.S. Magnetic Field

	Symbol Unit	Unit	Mea	suring Condi	High Bs Material	
	Symbol	Unit	Freq.	Flux den.	Temp.	P49
Initial Permeability	μ_i		≤ 10kHz	0.25mT	25°C	1700 ± 25%
Power Loss	Pv	KW/m ³	100kHz	200mT	25°C	800
					100°C	400
			500kHz	50mT	25°C	450
					100°C	220
Saturation Flux Density	Bs	mT	10kHz	H = 1200A/m	25°C	540
					100°C	460
Remanence	Br	mT	10kHz	H = 1200A/m	25°C	280
					100°C	50
Coercivity	Hc	A/m	10kHz	H = 1200A/m	25°C	15
					100°C	7
Curie Temperature	Тс	°C				≥ 280
Resistivity	ρ	Ωm				3.00
Density	d	g/cm ³				4.90

Note: Material characteristics are typical for a toroid core.

Power Loss V.S. Temperature

Saturation Flux Density V.S. Magnetic Field

				suring Condi	High Bs Material	
	Symbol	Unit	Freq.	Flux den.	Temp.	P491
Initial Permeability	μ_i		≤ 10kHz	0.25mT	25°C	1500 ± 25%
Power Loss	Pv	KW/m ³	25kHz	200mT	25°C	160
					100°C	240
			100kHz	200mT	25°C	900
					100°C	1390
			500kHz	50mT	25°C	250
					100°C	560
Saturation Flux Density	Bs	mT	10kHz	H = 1200A/m	25°C	600
					100°C	500
Remanence	Br	mT	10kHz	H = 1200A/m	25°C	140
					100°C	235
Coercivity	Hc	A/m	10kHz	H = 1200A/m	25°C	21
					100°C	20
Curie Temperature	Тс	°C				≥ 300
Resistivity	ρ	Ωm				5.00
Density	d	g/cm ³				4.90

Note: Material characteristics are typical for a toroid core.

Complex Permeability V.S. Frequency

	Symbol	Unit	Measuring Conditions			High Frequency Low Loss Material
	Symbol		Freq.	Flux den.	Temp.	P5
Initial Permeability	μ_t		$\leq 10 \mathrm{kHz}$	0.25mT	25°C	2000 ± 25%
Amplitude Permeability	$\mu_{\rm a}$		25kHz	200mT	25°C	> 4000
					100°C	> 4000
Power Loss	Pv	KW/m ³	300kHz	100mT	25°C	600
					100°C	350
			500kHz	50mT	25°C	220
					100°C	250
			700kHz	50mT	25°C	600
					100°C	550
Saturation Flux Density	Bs	mT	10kHz	H = 1200 A/m	25°C	470
					100°C	350
Remanence	Br	mT	10kHz	H = 1200 A/m	25°C	135
					100°C	70
Coercivity	Hc	A/m	10kHz	H = 1200 A/m	25°C	17
					100°C	10
Hysteresis Material Constant	η _в	10-6/mT	10kHz	1.5-3.0mT	25°C	< 1
Disaccommodation Factor	DF	10-6	10kHz	< 0.25 mT	25°C	< 2
Curie Temperature	Tc	°C				≥ 220
Resistivity	ρ	Ωm				6.40
Density	d	g/cm ³				4.70

Note: Material characteristics are typical for a toroid core.

Amplitude Permeability V.S. Flux Density (Bm)

Power Loss V.S. Temperature

Saturation Flux Density V.S. Magnetic Field

	Symbol	Unit	Mea	suring Condi	tions	High Frequency Low Loss Material
	Juiosi	Cint	Freq. Flux den.	Flux den.	Temp.	P51
Initial Permeability	μ_i		$\leq 10 \mathrm{kHz}$	0.25mT	25°C	1500 ± 25%
Amplitude Permeability	$\mu_{\rm a}$		25kHz	200mT	25°C	> 2500
					100°C	> 2500
Power Loss	Pv	KW/m ³	300kHz	100mT	25°C	410
					100°C	370
			500kHz	50mT	25°C	200
					100°C	100
			700kHz	50mT	25°C	300
					100°C	250
			1000kHz	50mT	25°C	600
					100°C	600
Saturation Flux Density	Bs	mT	10kHz	H = 1200 A/m	25°C	490
					100°C	400
Remanence	Br	mT	10kHz	H = 1200 A/m	25°C	215
					100°C	125
Coercivity	Hc	A/m	10kHz	H = 1200 A/m	25°C	35
					100°C	27
Hysteresis Material Constant	$\eta_{^{B}}$	10-6/mT	10kHz	1.5-3.0mT	25°C	< 1
Disaccommodation Factor	D_{F}	10-6	10kHz	< 0.25 mT	25°C	< 2
Curie Temperature	Tc	°C				≥ 250
Resistivity	ρ	Ωm				12.00
Density	d	g/cm ³				4.85

Note: Material characteristics are typical for a toroid core.

Amplitude Permeability V.S. Flux Density (Bm)

Saturation Flux Density V.S. Magnetic Field

	Symbol	Unit	Measuring Condition			High Frequency Low Loss Material
	Symoor	Omt	Freq. Fl	Flux den.	Temp.	P52
Initial Permeability	μ_i		$\leq 10 \mathrm{kHz}$	0.25mT	25°C	2000 ± 25%
Amplitude Permeability	$\mu_{\rm a}$		25kHz	200mT	25°C	> 4000
					100°C	> 4000
Power Loss	Pv	KW/m ³	300kHz	100mT	25°C	510
					100°C	450
			500kHz	50mT	25°C	150
					100°C	140
			700kHz	50mT	25°C	300
					100°C	350
			1000kHz	50mT	25°C	750
					100°C	1000
Saturation Flux Density	Bs	mT	10kHz	H = 1200 A/m	25°C	500
					100°C	400
Remanence	Br	mT	10kHz	H = 1200 A/m	25°C	140
					100°C	110
Coercivity	Hc	A/m	10kHz	H = 1200 A/m	25°C	21
					100°C	18
Hysteresis Material Constant	η _в	10-6/mT	10kHz	1.5-3.0mT	25°C	< 1
Disaccommodation Factor	D_{F}	10-6	10kHz	< 0.25 mT	25°C	< 2
Curie Temperature	Tc	°C				≥ 250
Resistivity	ρ	Ωm				6.50
Density	d	g/cm ³				4.85

Note: Material characteristics are typical for a toroid core.

Amplitude Permeability V.S. Flux Density (Bm)

Saturation Flux Density V.S. Magnetic Field

	Symbol Unit		Measuring Conditions			High Frequency Low Loss Material
	Symbol	Cint	Freq. Flux	Flux den.	Temp.	P53
Initial Permeability	μ_i		$\leq 10 \mathrm{kHz}$	0.25mT	25°C	1200 ± 25%
Amplitude Permeability	$\mu_{\rm a}$		25kHz	200mT	25°C	> 1900
					100°C	> 2000
Power Loss	Pv	KW/m ³	300kHz	100mT	25°C	350
					100°C	310
			500kHz	50mT	25°C	80
					100°C	60
			500kHz	100mT	25°C	650
					100°C	650
			1000kHz	50mT	25°C	300
					100°C	300
Saturation Flux Density	Bs	mT	10kHz	H = 1200 A/m	25°C	515
					100°C	420
Remanence	Br	mT	10kHz	H = 1200 A/m	25°C	180
					100°C	120
Coercivity	Hc	A/m	10kHz	H = 1200 A/m	25°C	38
					100°C	33
Hysteresis Material Constant	$\eta_{^{B}}$	10-6/mT	10kHz	1.5-3.0mT	25°C	< 1
Disaccommodation Factor	DF	10-6	10kHz	< 0.25 mT	25°C	< 2
Curie Temperature	Tc	°C				≥ 280
Resistivity	ρ	Ωm				10.00
Density	d	g/cm ³				4.80

Note: Material characteristics are typical for a toroid core.

Amplitude Permeability V.S. Flux Density (Bm)

Saturation Flux Density V.S. Magnetic Field

	Symbol	Unit	Mea	suring Condi	High Frequency Low Loss Material	
	Symbol	Omt	Freq.	Flux den.	Temp.	P61
Initial Permeability	μ_i		≤ 10kHz	0.25mT	25°C	900 ± 25%
Amplitude Permeability	$\mu_{\rm a}$		25kHz	200mT	25°C	> 1700
					100°C	> 1800
Power Loss	Pv	KW/m ³	1MHz	50mT	25°C	250
					100°C	110
			3MHz	10mT	25°C	50
					100°C	50
			3MHz	30mT	25°C	450
					100°C	370
			5MHz	9mT	25°C	150
					100°C	170
Saturation Flux Density	Bs	mT	10kHz	H = 1200 A/m	25°C	515
					100°C	430
Remanence	Br	mT	10kHz	H = 1200 A/m	25°C	200
					100°C	135
Coercivity	Hc	A/m	10kHz	H = 1200 A/m	25°C	50
					100°C	40
Hysteresis Material Constant	η _в	10-6/mT	10kHz	1.5-3.0mT	25°C	< 1
Disaccommodation Factor	DF	10-6	10kHz	< 0.25 mT	25°C	< 2
Curie Temperature	Tc	°C				≥ 280
Resistivity	ρ	Ωm				10.00
Density	d	g/cm ³				4.80

Note: Material characteristics are typical for a toroid core.

Amplitude Permeability V.S. Flux Density (Bm)

Saturation Flux Density V.S. Magnetic Field

			Maa	suring Condi	tions	High Frequency
	Symbol	Unit	Enca	Flux don	Town	Low Loss Material
Initial Darmaghility			rieq.	0.25mT	25°C	000 ± 25%
initial fermeability	μ_i		S TOKITZ	0.2.5111	25 C	900 ± 23 /0
Amplitude Permeability	μ_{a}		25kHz	200mT	25°C	> 1700
					100°C	> 1800
Power Loss	Pv	KW/m ³	1MHz	50mT	25°C	80
					100°C	80
			2MHz	80mT	25°C	1600
					100°C	2000
			3MHz	10mT	25°C	20
					100°C	20
			3MHz	30mT	25°C	200
					100°C	250
			5MHz	9mT	25°C	80
					100°C	80
Saturation Flux Density	Bs	mT	10kHz	H = 1200 A/m	25°C	540
					100°C	450
Remanence	Br	mT	10kHz	H = 1200A/m	25°C	205
					100°C	115
Coercivity	Hc	A/m	10kHz	H = 1200 A/m	25°C	50
					100°C	40
Hysteresis Material Constant	η _в	10-6/mT	10kHz	1.5-3.0mT	25°C	< 1
Disaccommodation Factor	DF	10-6	10kHz	< 0.25 mT	25°C	< 2
Curie Temperature	Tc	°C				≥ 280
Resistivity	ρ	Ωm				10.00
Density	d	g/cm ³				4.80

Note: Material characteristics are typical for a toroid core.

Saturation Flux Density V.S. Magnetic Field

	Course had	Unit	Mea	suring Condi	tions	Conventional High µ For CM Chokes Material
	Symbol	Unit	Freq.	Flux den.	Temp.	A10
Initial Permeability	μ_i		≤ 10kHz	0.25mT	25°C	10000 ± 30%
Relative Loss Factor	$\tan \delta/\mu_i$	10-6	10kHz	< 0.25mT	25°C	< 10
			100kHz		25°C	< 60
Saturation Flux Density	Bs	mT	10kHz	H = 1200A/m	25°C	410
					100°C	210
Remanence	Br	mT	10kHz	H = 1200A/m	25°C	140
					100°C	110
Temperature Factor of	$\alpha_{\rm F}$	10 ⁻⁶ /°C	10kHz	< 0.25 mT	$0 \sim 20^{\circ} \mathrm{C}$	0~1.5
Permeability					20 ~ 70°C	-0.5 ~ 1
Hysteresis Material Constant	$\eta_{\scriptscriptstyle B}$	10-6/mT	10kHz	1.5-3.0mT	25°C	< 0.5
Disaccommodation Factor	$D_{\rm F}$	10-6	10kHz	< 0.25 mT	25°C	< 2
Curie Temperature	Tc	°C				≥ 130
Resistivity	ρ	Ωm				0.15
Density	d	g/cm ³				4.90

Note: Material characteristics are typical for a toroid core.

		Symbol Unit	Mea	suring Condi	tions	Conventional High µ For CM Chokes Material
	Symbol	Unit	Freq.	Flux den.	Temp.	A121
Initial Permeability	μ_i		≤ 10kHz	0.25mT	25°C	12000 ± 30%
Relative Loss Factor	$\tan \delta/\mu_t$	10-6	10kHz	< 0.25mT	25°C	< 10
			100kHz		25°C	< 60
Saturation Flux Density	Bs	mT	10kHz	H = 1200A/m	25°C	380
					100°C	180
Remanence	Br	mT	10kHz	H = 1200A/m	25°C	130
					100°C	110
Temperature Factor of	$lpha_{ m F}$	10 ^{.6} /°C	10kHz	< 0.25 mT	0 ~ 20°C	0~1.5
Permeability					20 ~ 70°C	-0.5 ~ 1
Hysteresis Material Constant	η_{B}	10-6/mT	10kHz	1.5-3.0mT	25°C	< 0.5
Disaccommodation Factor	$D_{\rm F}$	10-6	10kHz	< 0.25 mT	25°C	< 2
Curie Temperature	Tc	°C				≥ 110
Resistivity	ρ	Ωm				0.12
Density	d	g/cm ³				4.90

Note: Material characteristics are typical for a toroid core.

	G 1 1			suring Condi	tions	Conventional High µ For CM Chokes Material
	Symbol	Unit	Freq.	Flux den.	Temp.	A13
Initial Permeability	μ_i		≤ 10kHz	0.25mT	25°C	12000 ± 30%
Relative Loss Factor	$\tan \delta/\mu_i$	10-6	10kHz	< 0.25mT	25°C	< 8
			100kHz		25°C	< 40
Saturation Flux Density	Bs	mT	10kHz	H = 1200A/m	25°C	400
					100°C	200
Remanence	Br	mT	10kHz	H = 1200A/m	25°C	120
					100°C	65
Temperature Factor of	$\alpha_{\rm F}$	10 ⁻⁶ /°C	10kHz	< 0.25 mT	$0 \sim 20^{\circ} \mathrm{C}$	1~3
Permeability					20 ~ 70°C	-1 ~ 1
Hysteresis Material Constant	$\eta_{^{B}}$	10-6/mT	10kHz	1.5-3.0mT	25°C	< 0.5
Disaccommodation Factor	$D_{\rm F}$	10-6	10kHz	< 0.25 mT	25°C	< 2
Curie Temperature	Tc	°C				≥ 125
Resistivity	ρ	Ωm				0.15
Density	d	g/cm ³				4.90

Note: Material characteristics are typical for a toroid core.

		mbol Unit	Mea	suring Condi	tions	Conventional High µ For CM Chokes Material
	Symbol		Freq.	Flux den.	Temp.	A151
Initial Permeability	μ_i		≤ 10kHz	0.25mT	25°C	15000 ± 30%
Relative Loss Factor	$\tan \delta/\mu_t$	10-6	10kHz	< 0.25mT	25°C	< 10
			100kHz		25°C	< 110
Saturation Flux Density	Bs	mT	10kHz	H = 1200A/m	25°C	400
					100°C	170
Remanence	Br	mT	10kHz	H = 1200A/m	25°C	220
					100°C	100
Temperature Factor of	$lpha_{ m F}$	10 ^{.6} /°C	10kHz	< 0.25 mT	0 ~ 20°C	-1 ~ 1
Permeability					20 ~ 70°C	-1 ~ 1
Hysteresis Material Constant	$\eta_{\scriptscriptstyle B}$	10-6/mT	10kHz	1.5-3.0mT	25°C	< 0.5
Disaccommodation Factor	$D_{\rm F}$	10-6	10kHz	< 0.25 mT	25°C	< 2
Curie Temperature	Tc	°C				≥ 110
Resistivity	ρ	Ωm				0.10
Density	d	g/cm ³				5.00

Note: Material characteristics are typical for a toroid core.

	Course had	Unit	Mea	suring Condi	tions	Wide Band Filter Material
	Symbol	Unit	Freq.	Flux den.	Temp.	A05
Initial Permeability	μ_i		≤ 10kHz	0.25mT	25°C	5000 ± 25%
Relative Loss Factor	$\tan \delta/\mu_i$	10-6	10kHz	< 0.25mT	25°C	< 4
			100kHz		25°C	< 15
Saturation Flux Density	Bs	mТ	10kHz	H = 1200A/m	25°C	440
					100°C	300
Remanence	Br	mT	10kHz	H = 1200A/m	25°C	80
					100°C	90
Temperature Factor of	$\alpha_{\rm F}$	10 ⁻⁶ /°C	10kHz	< 0.25 mT	$0\sim 20^{\circ} C$	$0 \sim 2$
Permeability					20 ~ 70°C	$0 \sim 2$
Hysteresis Material Constant	η_{B}	10-6/mT	10kHz	1.5-3.0mT	25°C	< 0.8
Disaccommodation Factor	$D_{\rm F}$	10-6	10kHz	< 0.25 mT	25°C	< 3
Curie Temperature	Tc	°C				≥ 140
Resistivity	ρ	Ωm				0.20
Density	d	g/cm ³				4.85

Note: Material characteristics are typical for a toroid core.

	G 1 1	¥7. */	Mea	suring Condi	tions	Wide Band Filter Material
	Symbol	Unit	Freq.	Flux den.	Temp.	A06
Initial Permeability	μ_i		≤ 10kHz	0.25mT	25°C	$6000 \pm 25\%$
Relative Loss Factor	$\tan \delta/\mu_i$	10-6	10kHz	< 0.25mT	25°C	< 4
			100kHz		25°C	< 15
Saturation Flux Density	Bs	mT	10kHz	H = 1200A/m	25°C	420
					100°C	280
Remanence	Br	mT	10kHz	H = 1200A/m	25°C	70
					100°C	80
Temperature Factor of	$\alpha_{\rm F}$	10 ⁻⁶ /°C	10kHz	< 0.25 mT	$0\sim 20^{\circ} C$	0~2.5
Permeability					20 ~ 70°C	0~2.5
Hysteresis Material Constant	$\eta_{\scriptscriptstyle B}$	10-6/mT	10kHz	1.5-3.0mT	25°C	< 0.8
Disaccommodation Factor	$D_{\rm F}$	10-6	10kHz	< 0.25 mT	25°C	< 3
Curie Temperature	Tc	°C				≥ 140
Resistivity	ρ	Ωm				0.20
Density	d	g/cm ³				4.85

Note: Material characteristics are typical for a toroid core.

Wide Band Filter Material Measuring Conditions Unit Symbol Freq. Flux den. Temp. A07 7000 ± 25% Initial Permeability ≤ 10kHz 0.25mT 25°C μ_{i} **Relative Loss Factor** 10.6 $\tan \delta / \mu_t$ 10kHz < 0.25mT 25°C < 8 100kHz 25°C < 30 Saturation Flux Density Bs mТ H = 1200A/m 25°C 10kHz 400 100°C 200 Remanence Br mТ 10kHz H = 1200A/m 25°C 150 100°C 110 Temperature Factor of 10⁻⁶/°C 10kHz < 0.25 mT0~20°C $\boldsymbol{\alpha}_{\scriptscriptstyle F}$ -1 ~ 1 Permeability 20 ~ 70°C -1 ~ 1 Hysteresis Material Constant 10-6/mT 10kHz 1.5-3.0mT 25°C < 1.2 $\eta_{^{B}}$ < 0.25 mT 25°C Disaccommodation Factor DF 10-6 10kHz < 2 Curie Temperature °C ≥ 130 Tc

Note: Material characteristics are typical for a toroid core.

ρ

d

Resistivity

Density

Product specification will differ from these data due to the influence of geometry and size.

Ωm

g/cm³

0.35

4.90

Material Characteristics-A07

Wide Band Filter Material Measuring Conditions Unit Symbol Freq. Flux den. Temp. A071 $\leq 10 \mathrm{kHz}$ 0.25mT 25°C $7000 \pm 25\%$ Initial Permeability μ_i Relative Loss Factor 10-6 10kHz $\tan \delta/\mu_i$ < 0.25mT 25°C < 8 100kHz 25°C < 30 Saturation Flux Density Bs mT 10kHz H = 1200A/m 25°C 440 100°C 280 Remanence Br mТ 10kHz H = 1200A/m 25°C 80 100°C 60 $0\sim 20^{\circ} C$ Temperature Factor of 10-6/°C 10kHz < 0.25 mT $\alpha_{\scriptscriptstyle F}$ -1 ~ 1 Permeability 20 ~ 70°C -1 ~ 1 Hysteresis Material Constant 10-6/mT 10kHz 1.5-3.0mT 25°C < 1.2 $\eta_{\scriptscriptstyle B}$ < 0.25 mT Disaccommodation Factor DF 10-6 10kHz 25°C < 2 **Curie Temperature** °C ≥ 145 Tc

Note: Material characteristics are typical for a toroid core.

ρ

d

Resistivity

Density

Product specification will differ from these data due to the influence of geometry and size.

Ωm

g/cm³

43

0.35

4.90

Initial Permeability

Relative Loss Factor

Remanence

Permeability

Temperature Factor of

Hysteresis Material Constant

Disaccommodation Factor

Curie Temperature

Resistivity

Density

Wide Band Filter Material Measuring Conditions Unit Symbol Freq. Flux den. Temp. A102 10000 ± 30% ≤ 10kHz 0.25mT 25°C μ_{i} 10.6 $\tan \delta / \mu_i$ 10kHz < 0.25mT 25°C < 10100kHz 25°C < 60 Saturation Flux Density Bs mТ H = 1200A/m 25°C 10kHz 380 100°C 180 Br mТ 10kHz H = 1200A/m 25°C 100°C

Remark: Best impedance, and permeability v. s. frequency performance for $10,000\mu_{\rm f}$ materials. Material characteristics are typical for a toroid core. Note:

10⁻⁶/°C

10-6/mT

10-6

°C

Ωm

g/cm³

 $\boldsymbol{\alpha}_{\scriptscriptstyle F}$

 η_{B}

DF

Tc

ρ

d

10kHz

10kHz

10kHz

< 0.25 mT

1.5-3.0mT

< 0.25 mT

0~20°C

20 ~ 70°C

25°C

25°C

Product specification will differ from these data due to the influence of geometry and size.

95

75

-1 ~ 1

-1 ~ 1

< 1

< 2

≥ 120

0.15

4.90

	G 1 1	¥7. •4	Meas	suring Condi	tions	High µ & Tc For Automotives
	Symbol	Unit	Freq	- Flux den	Temn	Material
Initial Permeability	μ		≤ 10kHz	0.25mT	25°C	7000 ± 25%
Relative Loss Factor	$tan\delta/\mu_i$	10-6	10kHz	< 0.25mT	25°C	< 5
			100kHz		25°C	< 15
Saturation Flux Density	Bs	mT	10kHz	H = 1200A/m	25°C	485
					100°C	340
Remanence	Br	mT	10kHz	H = 1200A/m	25°C	95
					100°C	80
Temperature Factor of	$\alpha_{\rm F}$	10-6/°C	10kHz	< 0.25 mT	$0\sim 20^{\circ}C$	1.5 ~ 3.5
Permeability					$20 \sim 70^{\circ} \mathrm{C}$	-1.5 ~ 1.5
Hysteresis Material Constant	$\eta_{\scriptscriptstyle B}$	10-6/mT	10kHz	1.5-3.0mT	25°C	< 1.0
Disaccommodation Factor	DF	10-6	10kHz	< 0.25 mT	25°C	< 1.0
Curie Temperature	Tc	°C				≥ 180
Resistivity	ρ	Ωm				0.20
Density	d	g/cm ³				4.90

Note: Material characteristics are typical for a toroid core.

Complex Permeability V.S. Frequency

	Symbol	Unit	Measuring Condition			High µ & Tc For Automotives Material
			Freq.	Flux den.	Temp.	A104
Initial Permeability	μ_i		≤ 10kHz	0.25mT	25°C	$10000\pm30\%$
Relative Loss Factor	$\tan \delta/\mu_i$	10-6	10kHz	< 0.25mT	25°C	< 10
			100kHz		25°C	< 30
Saturation Flux Density	Bs	mT	10kHz	H = 1200A/m	25°C	460
					100°C	295
Remanence	Br	mT	10kHz	H = 1200A/m	25°C	105
					100°C	105
Temperature Factor of	$\alpha_{\rm F}$	10-6/°C	10kHz	< 0.25 mT	$0\sim 20^{\circ}C$	$1 \sim 3$
Permeability					20 ~ 70°C	-1.5 ~ 0
Hysteresis Material Constant	$\eta_{\scriptscriptstyle B}$	10-6/mT	10kHz	1.5-3.0mT	25°C	< 0.5
Disaccommodation Factor	DF	10-6	10kHz	< 0.25 mT	25°C	< 2
Curie Temperature	Tc	°C				≥ 155
Resistivity	ρ	Ωm				0.15
Density	d	g/cm ³				4.90

Note: Material characteristics are typical for a toroid core.

Complex Permeability V.S. Frequency

	Symbol	Unit	Meas	suring Condi	tions	High <i>µ</i> Wide Temperature Material
			Freq.	Flux den.	Temp.	A044
Initial Permeability	μ_i		≤ 10kHz	0.25mT	25°C	$4000\pm25\%$
Relative Loss Factor	$\tan \delta/\mu_i$	10-6	10kHz	< 0.25mT	25°C	< 8
			100kHz		25°C	< 40
Saturation Flux Density	Bs	mT	10kHz	H = 1200A/m	25°C	450
					100°C	315
Remanence	Br	mT	10kHz	H = 1200A/m	25°C	55
					100°C	45
Temperature Factor of	$\alpha_{\rm F}$	10 ⁻⁶ /°C	10kHz	< 0.25 mT	$0\sim 20^{\circ}C$	-1 ~ 1
Permeability					$20 \sim 70^{\circ} \mathrm{C}$	-1 ~ 1
Hysteresis Material Constant	η_{B}	10-6/mT	10kHz	1.5-3.0mT	25°C	< 0.5
Disaccommodation Factor	DF	10-6	10kHz	< 0.25 mT	25°C	< 2
Curie Temperature	Tc	°C				≥ 170
Resistivity	ρ	Ωm				1.00
Density	d	g/cm ³				4.90

Note: Material characteristics are typical for a toroid core.

High μ Wide Temperature Material Measuring Conditions Unit Symbol Freq. Flux den. Temp. A064 ≤ 10kHz $6000\pm25\%$ 25°C Initial Permeability μ_i 0.25mT **Relative Loss Factor** 10-6 $\tan \delta/\mu_{t}$ 10kHz < 0.25mT 25°C < 8 100kHz 25°C < 40 Saturation Flux Density H = 1200A/m 25°C Bs mТ 10kHz 470 100°C 330 Remanence Br mТ 10kHz H = 1200A/m 25°C 135 100°C 115 Temperature Factor of 10-6/°C 10kHz < 0.25 mT $0\sim 20^{\circ}C$ $\alpha_{\scriptscriptstyle F}$ -1 ~ 1 Permeability 20 ~ 70°C -1 ~ 1 Hysteresis Material Constant 10-6/mT 10kHz 1.5-3.0mT 25°C < 0.5 η_{B} < 0.25 mT Disaccommodation Factor DF 10-6 10kHz 25°C < 2 **Curie Temperature** Tc °C ≥ 170 Resistivity 1.00 Ωm ρ Density d g/cm³ 4.90

Material Characteristics-A064

48

Note: Material characteristics are typical for a toroid core.

	Symbol	Symbol Unit	Mea	suring Condi	High µ Wide Temperature Material	
			Freq.	Flux den.	Temp.	N10
Initial Permeability	μ_i		$\leq 10 \text{kHz}$	0.25mT	25°C	$10000\pm30\%$
					-20°C	> 9000
Relative Loss Factor	$\tan\delta/\mu_i$	10-6	10kHz	< 0.25mT	25°C	< 10
			100kHz		25°C	< 90
Saturation Flux Density	Bs	mT	10kHz	H = 1200A/m	25°C	380
					100°C	130
Remanence	Br	mT	10kHz	H = 1200A/m	25°C	160
					100°C	110
Temperature Factor of	$\alpha_{\rm F}$	10 ⁻⁶ /°C	10kHz	< 0.25 mT	$0\sim 20^{\circ} C$	-1 ~ 0
Permeability					20 ~ 70°C	-1 ~ 1
Hysteresis Material Constant	$\eta_{\scriptscriptstyle B}$	10-6/mT	10kHz	1.5-3.0mT	25°C	< 0.5
Disaccommodation Factor	DF	10-6	10kHz	< 0.25 mT	25°C	< 2
Curie Temperature	Тс	°C				≥ 100
Resistivity	ρ	Ωm				0.12
Density	d	g/cm ³				5.00

Note: Material characteristics are typical for a toroid core.

	Course had	11	Mea	suring Condi	tions	For Wide Temperature LAN Material
	Symbol	Unit	Freq.	Flux den.	Temp.	A043
Initial Permeability	μ_i		≤ 10kHz	0.25mT	25°C	4500 ± 25%
Relative Loss Factor	$\tan \delta/\mu_i$	10-6	10kHz	< 0.25mT	25°C	< 10
			100kHz		25°C	< 10
Saturation Flux Density	Bs	mT	10kHz	H = 1200A/m	25°C	460
					100°C	300
Remanence	Br	mT	10kHz	H = 1200A/m	25°C	65
					100°C	60
Temperature Factor of	$\alpha_{\rm F}$	10 ⁻⁶ /°C	10kHz	< 0.25 mT	$0\sim 20^{\circ} C$	$1 \sim 2$
Permeability					20 ~ 70°C	-1 ~ 1
Hysteresis Material Constant	$\eta_{\scriptscriptstyle B}$	10-6/mT	10kHz	1.5-3.0mT	25°C	< 0.5
Disaccommodation Factor	DF	10-6	10kHz	< 0.25 mT	25°C	< 2
Curie Temperature	Tc	°C				≥ 160
Resistivity	ρ	Ωm				0.20
Density	d	g/cm ³				4.85

Frequency (kHz)

Product specification will differ from these data due to the influence of geometry and size.

Note: Material characteristics are typical for a toroid core.

Initial Permeability V.S. Field Strength

	G 1 1	Unit	Meas	suring Condi	tions	For Wide Temperature LAN Material
	Symbol	Unit	Freq.	Flux den.	Temp.	A062
Initial Permeability	μ_i		≤ 10kHz	0.25mT	25°C	6000 ± 25%
Relative Loss Factor	$\tan \delta/\mu_i$	10-6	10kHz	< 0.25mT	25°C	< 10
			100kHz		25°C	< 30
Saturation Flux Density	Bs	mT	10kHz	H = 1200A/m	25°C	460
					100°C	320
Remanence	Br	mT	10kHz	H = 1200A/m	25°C	100
					100°C	80
Temperature Factor of	$\alpha_{\rm F}$	10-6/°C	10kHz	< 0.25 mT	$0\sim 20^{\circ}C$	1~3
Permeability					$20 \sim 70^{\circ} C$	-1 ~ 1
Hysteresis Material Constant	$\eta_{\scriptscriptstyle B}$	10-6/mT	10kHz	1.5-3.0mT	25°C	< 0.5
Disaccommodation Factor	$D_{\rm F}$	10-6	10kHz	< 0.25 mT	25°C	< 2
Curie Temperature	Тс	°C				≥ 160
Resistivity	ρ	Ωm				0.20
Density	d	g/cm ³				4.85

Note: Material characteristics are typical for a toroid core.

	G 1 1	Unit	Mea	suring Condi	tions	For Wide Temperature LAN Material
	Symbol	Unit	Freq.	Flux den.	Temp.	N07
Initial Permeability	μ_i		≤ 10kHz	0.25mT	25°C	7000 ± 25%
Relative Loss Factor	${\rm tan}\delta/\mu_i$	10-6	10kHz	< 0.25mT	25°C	< 5
			100kHz		25°C	< 30
Saturation Flux Density	Bs	mT	10kHz	H = 1200A/m	25°C	400
					100°C	220
Remanence	Br	mT	10kHz	H = 1200A/m	25°C	70
					100°C	60
Temperature Factor of	$\alpha_{\rm F}$	10 ⁻⁶ /°C	10kHz	< 0.25 mT	$0\sim 20^{\circ} C$	-1 ~ 1
Permeability					20 ~ 70°C	-1 ~ 1
Hysteresis Material Constant	η_{B}	10-6/mT	10kHz	1.5-3.0mT	25°C	< 0.2
Disaccommodation Factor	$D_{\rm F}$	10-6	10kHz	< 0.25 mT	25°C	< 2
Curie Temperature	Tc	°C				≥ 130
Resistivity	ρ	Ωm				0.15
Density	d	g/cm ³				4.90

Note: Material characteristics are typical for a toroid core.

Complex Permeability V.S. Frequency

Low THD Material Measuring Conditions Unit Symbol Freq. A101 Flux den. Temp. ≤ 10kHz 0.25mT 25°C 10000 ± 30% **Initial Permeability** μ_{i} **Relative Loss Factor** 10.6 $\tan \delta/\mu_t$ 10kHz < 0.25mT 25°C < 10100kHz 25°C < 90 Saturation Flux Density mT H = 1200A/m 25°C Bs 10kHz 400 100°C 220 Remanence Br mТ 10kHz H = 1200A/m 25°C 175 100°C 125 Temperature Factor of 10⁻⁶/°C 10kHz < 0.25 mT 0~20°C $\boldsymbol{\alpha}_{\scriptscriptstyle F}$ -1 ~ 1 Permeability 20 ~ 70°C -1 ~ 1 Hysteresis Material Constant 10-6/mT 10kHz 1.5-3.0mT 25°C < 0.2 η_{B} Disaccommodation Factor DF 10-6 10kHz < 0.25 mT 25°C < 2 Curie Temperature °C ≥ 130 Tc Resistivity Ωm 0.15 ρ Density d g/cm³ 4.90

Remark: Best THD performance for $10,000\mu_t$ materials.

Note: Material characteristics are typical for a toroid core.

Material Characteristics-A101

Low η_B Material Measuring Conditions Unit Flux den. Temp. Fre

54

N4

Initial Permeability	μ_i		≤ 10kHz	0.25mT	25°C	2500 ± 25%
Relative Loss Factor	$\tan \delta/\mu_i$	10-6	10kHz	< 0.25mT	25°C	< 7
			100kHz		25°C	< 3
Saturation Flux Density	Bs	mT	10kHz	H = 1200A/m	25°C	450
					100°C	320
Remanence	Br	mT	10kHz	H = 1200A/m	25°C	180
				100°C	150	
Coercivity	Hc	A/m	10kHz	H = 1200A/m	25°C	14
					100°C	9
Temperature Factor of	$\alpha_{\rm F}$	10 ⁻⁶ /°C	10kHz	< 0.25 mT	$5\sim 25^\circ\mathrm{C}$	< 1.3
Permeability					25 ~ 55°C	< 1.3
Hysteresis Material Constant	$\eta_{\scriptscriptstyle B}$	10-6/mT	10kHz	1.5-3.0mT	25°C	< 0.6
Curie Temperature	Тс	°C				≥ 170
Resistivity	ρ	Ωm				7.50
Density	d	g/cm ³				4.70

Symbol

Note: Material characteristics are typical for a toroid core.

	Course had	Unit	Mea	suring Condi	tions	Low η_B Material
	Symbol		Freq.	Flux den.	Temp.	N42
Initial Permeability	μ_t		≤ 10kHz	0.25mT	25°C	3800 ± 25%
Relative Loss Factor	$\tan\delta/\mu_i$	10-6	10kHz	< 0.25mT	25°C	< 3.5
			100kHz		25°C	< 3.5
Saturation Flux Density	Bs	mT	10kHz	H = 1200A/m	25°C	530
					100°C	425
Remanence	Br	mT	10kHz	H = 1200A/m	25°C	100
					100°C	125
Coercivity	Hc	A/m	10kHz	H = 1200A/m	25°C	9
					100°C	13
Temperature Factor of	$\alpha_{\rm F}$	10 ⁻⁶ /°C	10kHz	< 0.25 mT	5 ~ 25°C	$7 \sim 9$
Permeability					25 ~ 55°C	< -4 ~ -2
Hysteresis Material Constant	$\eta_{\scriptscriptstyle B}$	10-6/mT	10kHz	1.5-3.0mT	25°C	< 0.3
Curie Temperature	Tc	°C				≥ 250
Resistivity	ρ	Ωm				5.00
Density	d	g/cm ³				4.90

Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size.

	G 1 1	Unit	Mea	suring Condi	tions	Low η_B Material
	Symbol	Unit	Freq.	Flux den.	Temp.	N43
Initial Permeability	μ_t		≤ 10kHz	0.25mT	25°C	$750\pm25\%$
Relative Loss Factor	${\rm tan}\delta/\mu_i$	10-6	10kHz	< 0.25mT	25°C	< 60
			100kHz		25°C	< 15
Saturation Flux Density	Bs	mT	10kHz	H = 1200A/m	25°C	490
					100°C	400
Remanence	Br	mT	mT 10kHz	z H = 1200A/m	25°C	400
					100°C	325
Coercivity	Нс	A/m	10kHz	H = 1200A/m	25°C	25
					100°C	21
Temperature Factor of	$\alpha_{\rm F}$	10 ⁻⁶ /°C	10kHz	< 0.25 mT	5 ~ 25°C	< 2.2
Permeability					25 ~ 55°C	< 1.8
Hysteresis Material Constant	$\eta_{\scriptscriptstyle B}$	10-6/mT	10kHz	1.5-3.0mT	25°C	< 2.5 ^(100kHz)
Curie Temperature	Тс	°C				≥ 250
Resistivity	ρ	Ωm				2.00
Density	d	g/cm ³				4.70

Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size.

EMI Filter Material Measuring Conditions Unit Symbol Freq. Flux den. Temp. N5 2000 ± 25% Initial Permeability ≤ 10kHz 0.25mT 25°C μ_{i} $tan\delta/\mu_i$ < 0.25mT **Relative Loss Factor** 10-6 10kHz 25°C < 1.24 100kHz 25°C < 23 Saturation Flux Density mТ 10kHz H = 1200A/m 25°C 370 Bs 100°C 285 H = 1200A/m 25°C Remanence Br mТ 10kHz 240 100°C 140 H = 1200A/m 25°C Coercivity Hc 10kHz A/m 100°C Temperature Factor of $\alpha_{\rm F}$ 10⁻⁶/°C 10kHz < 0.25 mT 5~25°C < 1.1 Permeability 25 ~ 55°C < 5.8 Hysteresis Material Constant $\eta_{\rm B}$ 10-6/mT 10kHz 1.5-3.0mT 25°C < 0.36 °C Curie Temperature Tc ≥ 130 Resistivity ρ Ωm 140 Density d g/cm³ 4.95

Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size.

57

Automotive EMI-Suppression Material Measuring Conditions Unit Symbol Flux den. Freq. Temp. K081 Initial Permeability ≤ 10kHz 0.25mT 25°C $800\pm25\%$ μ_i H = 4000A/m Saturation Flux Density Bs mТ 10kHz 25°C 400 mТ H = 4000A/m 25°C Remanence Br 10kHz 280 Coercivity Hc 10kHz H = 4000 A/m25°C 21 A/m Relative Loss Factor tanδ/μ 10.6 100kHz < 0.25mT 25°C 17 **Temperature Factor of** 10-6/°C 10kHz < 0.25 mT 20 ~ 60°C $\boldsymbol{\alpha}_{\rm F}$ 8 Permeability **Curie Temperature** Tc °C ≥ 190 Resistivity Ωm > 10⁶ ρ Density d 5.10 g/cm3

Note: Material characteristics are typical for a toroid core.

Product specification will differ from these data due to the influence of geometry and size.

58

	Symbol	Symbol Unit		suring Condi	tions	Automotive EMI- Suppression Materia
			Freq.	Flux den.	Temp.	K10
Initial Permeability	μ		≤ 10kHz	0.25mT	25°C	1000 ± 25%
Saturation Flux Density	Bs	mT	10kHz	H = 4000A/m	25°C	355
Remanence	Br	mT	10kHz	H = 4000A/m	25°C	250
Coercivity	Нс	A/m	10kHz	H = 4000A/m	25°C	19
Relative Loss Factor	tanδ/µ₁	10-6	100kHz	< 0.25mT	25°C	11
Temperature Factor of	$\alpha_{\rm F}$	10 ⁻⁶ /°C	10kHz	< 0.25 mT	20 ~ 60°C	8
Permeability						
Curie Temperature	Tc	°C				≥ 160
Resistivity	ρ	Ωm				> 10 ⁶
Density	d	g/cm ³				5.10

Note: Material characteristics are typical for a toroid core.

	Symbol	Unit	Mea	suring Condi	tions	Automotive EMI- Suppression Materia
	Symbol	Cint	Freq.	Flux den.	Temp.	K12
Initial Permeability	μ_i		≤ 10kHz	0.25mT	25°C	1200 ± 25%
Saturation Flux Density	Bs	mT	10kHz	H = 1200A/m	25°C	355
Remanence	Br	mT	10kHz	H = 1200A/m	25°C	250
Coercivity	Нс	A/m	10kHz	H = 1200A/m	25°C	12
Relative Loss Factor	tanδ/µ₁	10-6	100kHz	< 0.25mT	25°C	13
Temperature Factor of	$lpha_{ m F}$	10 ^{-6/°} C	10kHz	< 0.25 mT	20 ~ 60°C	11
Permeability						
Curie Temperature	Tc	°C				≥ 160
Resistivity	ρ	Ωm				> 106
Density	d	g/cm ³				5.10

Note: Material characteristics are typical for a toroid core.

Complex Permeability V.S. Frequency

	Symbol	Unit	Mea	suring Condi	tions	Automotive EMI- Suppression Materia
	~,		Freq.	Flux den.	Temp.	K13
Initial Permeability	μ_i		≤ 10kHz	0.25mT	25°C	1300 ± 25%
Saturation Flux Density	Bs	mT	10kHz	H = 1200A/m	25°C	340
Remanence	Br	mT	10kHz	H = 1200A/m	25°C	190
Coercivity	Hc	A/m	10kHz	H = 1200A/m	25°C	16
Relative Loss Factor	tanδ/µ;	10-6	100kHz	< 0.25mT	25°C	15
Temperature Factor of	$lpha_{ m F}$	10 ^{-6/°} C	10kHz	< 0.25 mT	20 ~ 60°C	8
Permeability						
Curie Temperature	Тс	°C				≥ 150
Resistivity	ρ	Ωm				> 106
Density	d	g/cm ³				5.10

Note: Material characteristics are typical for a toroid core.

	Symbol	Unit	Mea	suring Condi	tions	Suppression Material		
	~~		Freq.	Flux den.	Temp.	K15		
Initial Permeability	μ_{t}		≤ 10kHz	0.25mT	25°C	1500 ± 25%		
Saturation Flux Density	Bs	mT	10kHz	H = 1200A/m	25°C	330		
Remanence	Br	mT	10kHz	H = 1200A/m	25°C	200		
Coercivity	Нс	A/m	10kHz	H = 1200A/m	25°C	11		
Relative Loss Factor	$\tan \delta/\mu_i$	10-6	100kHz	< 0.25mT	25°C	11		
Temperature Factor of	$\alpha_{\rm F}$	10 ^{.6} /°C	10kHz	< 0.25 mT	20 ~ 60°C	6		
Permeability								
Curie Temperature	Tc	°C				≥ 130		
Resistivity	ρ	Ωm				> 10 ⁶		
Density	d	g/cm ³				5.10		

Note: Material characteristics are typical for a toroid core.

	Symbol	Unit	Mea	suring Condi	tions	Automotive EMI- Suppression Materia
	,		Freq.	Flux den.	Temp.	K151
Initial Permeability	μ_i		≤ 10kHz	0.25mT	25°C	1500 ± 25%
Saturation Flux Density	Bs	mT	10kHz	H = 1200A/m	25°C	290
Remanence	Br	mT	10kHz	H = 1200A/m	25°C	150
Coercivity	Нс	A/m	10kHz	H = 1200A/m	25°C	20
Relative Loss Factor	$\tan \delta/\mu_t$	10-6	100kHz	< 0.25mT	25°C	10
Temperature Factor of	$\alpha_{\rm F}$	10 ^{.6} /°C	10kHz	< 0.25 mT	20 ~ 60°C	4
Permeability						
Curie Temperature	Tc	°C				≥ 110
Resistivity	ρ	Ωm				> 10 ⁶
Density	d	g/cm ³				5.10

Note: Material characteristics are typical for a toroid core.

Automotive EMI-Suppression Material Measuring Conditions Unit Symbol Flux den. Freq. Temp. K20 Initial Permeability ≤ 10kHz 0.25mT 25°C 2000 ± 25% μ_i Saturation Flux Density mТ 10kHz H = 1200A/m 25°C 300 Bs Remanence Br mТ 10kHz H = 1200 A/m25°C 150 Coercivity 10kHz H = 1200 A/m25°C Hc A/m 11 Relative Loss Factor 25°C 10.6 100kHz < 0.25mT $tan\delta/\mu_{1}$ 11 Temperature Factor of 10-6/°C 10kHz < 0.25 mT 20 ~ 60°C $\alpha_{\rm F}$ 3 Permeability **Curie Temperature** Tc °C ≥ 100 Resistivity Ωm $> 10^{6}$ ρ Density 5.10 d g/cm³

Note: Material characteristics are typical for a toroid core.

					Automotive FMI-	
	Symbol	Unit	Mea	suring Condi	tions	Suppression Materia
	·		Freq.	Flux den.	Temp.	K25
Initial Permeability	μ_i		≤ 10kHz	0.25mT	25°C	2500 ± 25%
Saturation Flux Density	Bs	mT	10kHz	H = 1200A/m	25°C	275
Remanence	Br	mT	10kHz	H = 1200A/m	25°C	170
Coercivity	Hc	A/m	10kHz	H = 1200A/m	25°C	14
Relative Loss Factor	$\tan \delta/\mu_t$	10-6	100kHz	< 0.25mT	25°C	15
Temperature Factor of	$lpha_{ m F}$	10 ⁻⁶ /°C	10kHz	< 0.25 mT	20 ~ 60°C	3
Permeability						
Curie Temperature	Tc	°C				≥ 90
Resistivity	ρ	Ωm				> 106
Density	d	g/cm ³				5.10

Note: Material characteristics are typical for a toroid core.

Automotive EMI-Suppression Material Measuring Conditions Unit Symbol Freq. Flux den. D1C Temp. Initial Permeability ≤ 10kHz 0.25mT 25°C $350 \pm 25\%$ μ_i Saturation Flux Density mТ 10kHz H = 4000A/m 25°C 360 Bs Remanence Br mТ 10kHz H = 4000 A/m25°C 255 Coercivity 10kHz H = 4000 A/m25°C Hc A/m 31 Relative Loss Factor < 0.25mT 25°C 10.6 1MHz $tan\delta/\mu_i$ 30 Temperature Factor of 10⁻⁶/°C 10kHz < 0.25 mT 20 ~ 80°C $\alpha_{\rm F}$ ≤ 50 Permeability **Curie Temperature** Tc °C ≥ 160 Resistivity Ωm $> 10^{6}$ ρ Density 5.00 d g/cm³

Note: Material characteristics are typical for a toroid core.

Material Characteristics-D1C

	Course had	Unit	Mea	suring Condi	tions	Automotive EMI- Suppression Materia
	Symbol	Unit	Freq.	Flux den.	Temp.	D25
Initial Permeability	μ_{i}		≤ 10kHz	0.25mT	25°C	500 ± 25%
Saturation Flux Density	Bs	mT	10kHz	H = 4000A/m	25°C	390
Remanence	Br	mT	10kHz	H = 4000A/m	25°C	260
Coercivity	Нс	A/m	10kHz	H = 4000A/m	25°C	58
Relative Loss Factor	tanδ/µ₁	10-6	1MHz	< 0.25mT	25°C	248
Temperature Factor of	$\alpha_{\rm F}$	10 ^{-6/°} C	10kHz	< 0.25 mT	20 ~ 80°C	≤ 35
Permeability						
Curie Temperature	Тс	°C				≥ 180
Resistivity	Q	Ωm				> 106
Density	d	g/cm ³				5.00

Note: Material characteristics are typical for a toroid core.

Product specification will differ from these data due to the influence of geometry and size.

Material Characteristics-D25

Automotive EMI-Suppression Material Measuring Conditions Unit Symbol Flux den. D27 Freq. Temp. Initial Permeability ≤ 10kHz 0.25mT 25°C $700 \pm 25\%$ μ_i Saturation Flux Density mТ 10kHz H = 4000A/m 25°C 365 Bs Remanence Br mТ 10kHz H = 4000 A/m25°C 235 Coercivity 10kHz H = 4000 A/m25°C Hc A/m 20 Relative Loss Factor 0.1MHz 25°C 10.6 < 0.25mT $tan\delta/\mu_i$ 20 Temperature Factor of 10⁻⁶/°C 10kHz < 0.25 mT 20 ~ 80°C $\alpha_{\rm F}$ ≤7 Permeability **Curie Temperature** Tc °C ≥ 150 Resistivity Ωm $> 10^{6}$ ρ Density 4.80 d g/cm³

Note: Material characteristics are typical for a toroid core.

Automotive EMI-Suppression Material Measuring Conditions Unit Symbol Flux den. D28 Freq. Temp. Initial Permeability ≤ 10kHz 0.25mT 25°C 800 ± 25% μ_i Saturation Flux Density mТ 10kHz H = 4000A/m 25°C 365 Bs Remanence Br mТ 10kHz H = 4000 A/m25°C 180 Coercivity H = 4000 A/m25°C Hc A/m 10kHz 26 0.1MHz 25°C **Relative Loss Factor** 10.6 < 0.25mT $tan\delta/\mu_{1}$ 20 Temperature Factor of 10⁻⁶/°C 10kHz < 0.25 mT 20 ~ 80°C $\alpha_{\rm F}$ ≤ 5 Permeability -50 ~ 80°C ≤ 1.5 **Curie Temperature** Tc °C ≥ 150 Resistivity Ωm $> 10^{6}$ ρ Density 5.00 d g/cm³

Note: Material characteristics are typical for a toroid core.

Material Characteristics-D28

	Symbol	Unit	Measuring Conditions			Automotive EMI- Suppression Materia
			Freq.	Flux den.	Temp.	D30
nitial Permeability	μ_{i}		≤ 10kHz	0.25mT	25°C	1000 ± 25%
Saturation Flux Density	Bs	mT	10kHz	H = 4000A/m	25°C	340
Remanence	Br	mT	10kHz	H = 4000A/m	25°C	115
Coercivity	Нс	A/m	10kHz	H = 4000A/m	25°C	28
Relative Loss Factor	tanδ/μι	10-6	0.1MHz	< 0.25mT	25°C	35
femperature Factor of	$\alpha_{\rm F}$	10 ^{-6/°} C	10kHz	< 0.25 mT	20 ~ 80°C	≤6
Permeability						
Curie Temperature	Тс	°C				≥ 140
Resistivity	ρ	Ωm				> 106
Density	d	g/cm ³				5.00

Note: Material characteristics are typical for a toroid core.

Product specification will differ from these data due to the influence of geometry and size.

70

Material Characteristics-D30

Automotive EMI-Suppression Material Measuring Conditions Unit Symbol Freq. Flux den. D35 Temp. Initial Permeability ≤ 10kHz 0.25mT 25°C 1100 ± 25% μ_i Saturation Flux Density mТ 10kHz H = 1200A/m 25°C 305 Bs Remanence Br mТ 10kHz H = 1200 A/m25°C 140 Coercivity 10kHz H = 1200 A/m25°C Hc A/m 22 Relative Loss Factor 0.1MHz 25°C 10.6 < 0.25mT $tan\delta/\mu_{1}$ 20 Temperature Factor of 10-6/°C 10kHz < 0.25 mT 20 ~ 80°C $\alpha_{\rm F}$ ≤2 Permeability **Curie Temperature** Tc °C ≥ 120 Resistivity Ωm $> 10^{6}$ ρ Density 5.00 d g/cm³

Note: Material characteristics are typical for a toroid core.

Material Characteristics-D35

	G 1 1	¥7. */	Mea	suring Condi	Automotive EMI- Suppression Materia	
	Symbol	Unit	Freq.	Flux den.	Temp.	D37
Initial Permeability	μ_{t}		≤ 10kHz	0.25mT	25°C	1500 ± 25%
Saturation Flux Density	Bs	mT	10kHz	H = 1200A/m	25°C	290
Remanence	Br	mT	10kHz	H = 1200A/m	25°C	150
Coercivity	Нс	A/m	10kHz	H = 1200A/m	25°C	20
Relative Loss Factor	$\tan \delta/\mu_i$	10-6	0.1MHz	< 0.25mT	25°C	10
Temperature Factor of	$\alpha_{\rm F}$	10 ⁻⁶ /°C	10kHz	< 0.25 mT	20 ~ 80°C	≤4
Permeability						
Curie Temperature	Tc	°C				≥ 110
Resistivity	ρ	Ωm				> 10 ⁶
Density	d	g/cm ³				5.00

Note: Material characteristics are typical for a toroid core.

Automotive EMI-Suppression Material Measuring Conditions Unit Symbol Freq. Flux den. D40 Temp. Initial Permeability ≤ 10kHz 0.25mT 25°C $2000\pm25\%$ μ_i Saturation Flux Density mТ 10kHz H = 1200A/m 25°C 275 Bs Remanence Br mТ 10kHz H = 1200 A/m25°C 115 Coercivity 10kHz H = 1200 A/m25°C Hc A/m 8 Relative Loss Factor 0.1MHz 25°C 10.6 < 0.25mT $tan\delta/\mu_i$ 18 Temperature Factor of 10-6/°C 10kHz < 0.25 mT 20 ~ 80°C $\alpha_{\rm F}$ ≤ 20 Permeability **Curie Temperature** Tc °C ≥ 90 Resistivity Ωm $> 10^{6}$ ρ Density 5.00 d g/cm³

Note: Material characteristics are typical for a toroid core.

Conventional High Bs Material Measuring Conditions Unit Symbol Freq. Flux den. Temp. A30 Initial Permeability ≤ 10kHz 0.25mT 25°C $300 \pm 25\%$ μ_i Saturation Flux Density mТ 10kHz H = 4000A/m 25°C 435 Bs Remanence Br mТ 10kHz H = 4000 A/m25°C 300 Coercivity H = 4000 A/m25°C Hc A/m 10kHz 68 25°C **Relative Loss Factor** 10.6 1MHz < 0.25mT $tan\delta/\mu_{1}$ 40 Temperature Factor of 10⁻⁶/°C 10kHz < 0.25 mT 20 ~ 80°C $\alpha_{\rm F}$ ≤ 25 Permeability **Curie Temperature** Tc °C ≥ 250 Resistivity Ωm $> 10^{6}$ ρ Density 5.00 d g/cm³

Note: Material characteristics are typical for a toroid core.

Product specification will differ from these data due to the influence of geometry and size.

74

Saturation Flux Density V.S. Temperature

Conventional High Bs Material Measuring Conditions Unit Symbol Freq. Flux den. Temp. A31 Initial Permeability ≤ 10kHz 0.25mT 25°C $300 \pm 25\%$ μ_i Saturation Flux Density 10kHz H = 4000A/m 25°C 435 Bs mТ Remanence Br mТ 10kHz H = 4000 A/m25°C 180 Coercivity H = 4000 A/m25°C Hc A/m 10kHz 52 0.4MHz 25°C **Relative Loss Factor** $\tan \delta/\mu_i$ 10.6 < 0.25mT 50 Temperature Factor of 10⁻⁶/°C 10kHz < 0.25 mT 20 ~ 80°C $\alpha_{\rm F}$ ≤ 25 Permeability **Curie Temperature** Tc °C ≥ 250 Resistivity Ωm $> 10^{6}$ ρ Density 5.00 d g/cm³

Note: Material characteristics are typical for a toroid core.

Product specification will differ from these data due to the influence of geometry and size.

Conventional High Bs Material Measuring Conditions Unit Symbol Freq. Flux den. Temp. A40 Initial Permeability ≤ 10kHz 0.25mT 25°C $400 \pm 25\%$ μ_i Saturation Flux Density mТ 10kHz H = 4000A/m 25°C 430 Bs Remanence Br mТ 10kHz H = 4000 A/m25°C 320 Coercivity H = 4000 A/m25°C Hc A/m 10kHz 62 25°C **Relative Loss Factor** $\tan \delta/\mu_i$ 10.6 1MHz < 0.25mT 35 Temperature Factor of 10⁻⁶/°C 10kHz < 0.25 mT 20 ~ 80°C $\alpha_{\rm F}$ ≤ 20 Permeability **Curie Temperature** Tc °C ≥ 250 Resistivity Ωm $> 10^{6}$ ρ Density 5.00 d g/cm³

Note: Material characteristics are typical for a toroid core.

Product specification will differ from these data due to the influence of geometry and size.

76

Saturation Flux Density V.S. Temperature

Conventional High Bs Material Measuring Conditions Unit Symbol Freq. Flux den. Temp. A50 Initial Permeability ≤ 10kHz 0.25mT 25°C 500 ± 25% μ_i Saturation Flux Density 10kHz H = 4000A/m 25°C 330 Bs mТ Remanence Br mТ 10kHz H = 4000 A/m25°C 125 Coercivity H = 4000 A/m25°C Hc A/m 10kHz 56 0.1MHz 25°C **Relative Loss Factor** 10.6 < 0.25mT $tan\delta/\mu_{1}$ 30 Temperature Factor of 10⁻⁶/°C 10kHz < 0.25 mT 20 ~ 80°C $\alpha_{\rm F}$ $1 \sim 5$ Permeability **Curie Temperature** Tc °C ≥ 150 Resistivity Ωm $> 10^{6}$ ρ Density 5.00 d g/cm³

Note: Material characteristics are typical for a toroid core. Product specification will differ from these data due to the influence of geometry and size.

Saturation Flux Density V.S. Magnetic Field

Saturation Flux Density V.S. Temperature

Automotive High Bs Material Measuring Conditions Unit Symbol Freq. Flux den. Temp. B25 Initial Permeability ≤ 10kHz 0.25mT 25°C $250 \pm 25\%$ μ_i Saturation Flux Density mТ 10kHz H = 4000A/m 25°C 445 Bs Remanence Br mТ 10kHz H = 4000 A/m25°C 320 Coercivity H = 4000 A/m25°C Hc A/m 10kHz 95 25°C **Relative Loss Factor** 10.6 100kHz < 0.25mT $tan\delta/\mu_{1}$ 70 Temperature Factor of 10⁻⁶/°C 10kHz < 0.25 mT 20 ~ 60°C $\alpha_{\rm F}$ 12 Permeability **Curie Temperature** Tc °C ≥ 250 Resistivity Ωm $> 10^{6}$ ρ Density d g/cm³ 5.20

Note: Material characteristics are typical for a toroid core.

Product specification will differ from these data due to the influence of geometry and size.

Saturation Flux Density V.S. Magnetic Field

	G 1 1	¥7. */	Mea	suring Condi	Automotive Hig Bs Material	
	Symbol	Unit	Freq.	Flux den.	Temp.	B30
Initial Permeability	μ_{t}		≤ 10kHz	0.25mT	25°C	300 ± 25%
Saturation Flux Density	Bs	mT	10kHz	H = 4000A/m	25°C	470
Remanence	Br	mT	10kHz	H = 4000A/m	25°C	250
Coercivity	Нс	A/m	10kHz	H = 4000A/m	25°C	80
Relative Loss Factor	$tan\delta/\mu_i$	10-6	100kHz	< 0.25mT	25°C	60
Temperature Factor of	$\alpha_{\rm F}$	10 ^{.6} /°C	10kHz	< 0.25 mT	20 ~ 60°C	16
Permeability						
Curie Temperature	Tc	°C				≥ 300
Resistivity	ρ	Ωm				> 10 ⁶
Density	d	g/cm ³				5.20

Note: Material characteristics are typical for a toroid core.

Saturation Flux Density V.S. Magnetic Field

Saturation Flux Density V.S. Temperature

Automotive High Bs Material Measuring Conditions Unit Symbol Freq. Flux den. Temp. B40 Initial Permeability ≤ 10kHz 0.25mT 25°C $400 \pm 25\%$ μ_i Saturation Flux Density mТ 10kHz H = 4000A/m 25°C 430 Bs Remanence Br mТ 10kHz H = 4000 A/m25°C 300 Coercivity H = 4000 A/m25°C Hc A/m 10kHz 45 25°C **Relative Loss Factor** 10.6 100kHz < 0.25mT $tan\delta/\mu_{1}$ 40 Temperature Factor of 10⁻⁶/°C 10kHz < 0.25 mT 20 ~ 60°C $\alpha_{\rm F}$ 10 Permeability **Curie Temperature** Tc °C ≥ 240 Resistivity Ωm $> 10^{6}$ ρ Density d g/cm³ 5.20

Note: Material characteristics are typical for a toroid core.

Product specification will differ from these data due to the influence of geometry and size.

	Course had	Unit	Meas	suring Condi	Automotive High Bs Material	
	Symbol	Unit	Freq.	Flux den.	Temp.	B45
Initial Permeability	μ_{i}		≤ 10kHz	0.25mT	25°C	450 ± 25%
Saturation Flux Density	Bs	mT	10kHz	H = 4000A/m	25°C	450
Remanence	Br	mT	10kHz	H = 4000A/m	25°C	270
Coercivity	Нс	A/m	10kHz	H = 4000A/m	25°C	49
Relative Loss Factor	tanδ/µ₁	10-6	100kHz	< 0.25mT	25°C	40
Temperature Factor of	$\alpha_{\rm F}$	10 ^{-6/°} C	10kHz	< 0.25 mT	20 ~ 60°C	15
Permeability						
Curie Temperature	Tc	°C				≥ 240
Resistivity	Q	Ωm				> 10 ⁶
Density	d	g/cm ³				5.20

Note: Material characteristics are typical for a toroid core.

Saturation Flux Density V.S. Temperature

Material Characteristics-B45

Automotive High Bs Material Measuring Conditions Unit Symbol Freq. Flux den. Temp. B60 Initial Permeability ≤ 10kHz 0.25mT 25°C $600 \pm 25\%$ μ_i Saturation Flux Density mТ 10kHz H = 4000A/m 25°C 430 Bs Remanence Br mТ 10kHz H = 4000 A/m25°C 300 Coercivity H = 4000 A/m25°C Hc A/m 10kHz 40 25°C **Relative Loss Factor** 10.6 100kHz < 0.25mT $tan\delta/\mu_{1}$ 25 Temperature Factor of 10⁻⁶/°C 10kHz < 0.25 mT 20 ~ 60°C $\alpha_{\rm F}$ 12 Permeability **Curie Temperature** Tc °C ≥ 210 Resistivity Ωm $> 10^{6}$ ρ Density d g/cm³ 5.20

Note: Material characteristics are typical for a toroid core.

Product specification will differ from these data due to the influence of geometry and size.

Saturation Flux Density V.S. Magnetic Field

Saturation Flux Density V.S. Temperature

Automotive High Bs Material Measuring Conditions Unit Symbol Freq. Flux den. Temp. B90 Initial Permeability ≤ 10kHz 0.25mT 25°C 900 ± 25% μ_i Saturation Flux Density mТ 10kHz H = 4000A/m 25°C 390 Bs Remanence Br mТ 10kHz H = 4000 A/m25°C 250 Coercivity H = 4000 A/m25°C Hc A/m 10kHz 38 25°C **Relative Loss Factor** 10.6 100kHz < 0.25mT $tan\delta/\mu_{1}$ 13 Temperature Factor of 10⁻⁶/°C 10kHz < 0.25 mT 20 ~ 60°C $\alpha_{\rm F}$ 8 Permeability **Curie Temperature** Tc °C ≥ 180 Resistivity Ωm $> 10^{6}$ ρ Density d g/cm³ 5.20

Note: Material characteristics are typical for a toroid core.

Product specification will differ from these data due to the influence of geometry and size.

Low Permeability Material Measuring Conditions Unit Symbol Flux den. L1 Freq. Temp. Initial Permeability ≤ 10kHz 0.25mT 25°C $150 \pm 25\%$ μ_i Saturation Flux Density Bs mТ 10kHz H = 4000 A/m25°C 410 Remanence Br 10kHz H = 4000A/m 25°C 170 mТ Coercivity Hc A/m 10kHz H = 4000 A/m25°C 105 **Relative Loss Factor** 10-6 100kHz 25°C $tan\delta/\mu_i$ < 0.25mT 180 **Curie Temperature** Tc °C ≥ 250 Resistivity Ωm > 10⁶ ρ Density d g/cm³ 5.10

Note: Material characteristics are typical for a toroid core.

Product specification will differ from these data due to the influence of geometry and size.

Material Characteristics-L1

	Course had	11	Mea	suring Condi	Low Permeability Material	
	Symbol	Unit	Freq.	Flux den.	Temp.	L2
Initial Permeability	μ_i		≤ 10kHz	0.25mT	25°C	60 ± 25%
Saturation Flux Density	Bs	mT	10kHz	H = 4000A/m	25°C	420
Remanence	Br	mT	10kHz	H = 4000A/m	25°C	275
Coercivity	Нс	A/m	10kHz	H = 4000A/m	25°C	140
Relative Loss Factor	tanδ/μ;	10.6	10MHz	< 0.25mT	25°C	150
Curie Temperature	Тс	°C				≥ 250
Resistivity	Q	Ωm				> 10 ⁶
Density	d	g/cm ³				5.10

Note: Material characteristics are typical for a toroid core.

	Course had	11	Mea	suring Condi	tions	Low Permeability Material
	Symbol	Unit	Freq.	Flux den.	Temp.	L3
Initial Permeability	μ_i		≤ 10kHz	0.25mT	25°C	20 ± 25%
Saturation Flux Density	Bs	mT	10kHz	H = 8000A/m	25°C	305
Remanence	Br	mT	10kHz	H = 8000A/m	25°C	120
Coercivity	Нс	A/m	10kHz	H = 8000A/m	25°C	600
Relative Loss Factor	tanð/µ₁	10.6	10MHz	< 0.25mT	25°C	445
Curie Temperature	Тс	°C				≥ 300
Resistivity	ρ	Ωm				> 10 ⁶
Density	d	g/cm ³				5.10

Note: Material characteristics are typical for a toroid core.

Saturation Flux Density V.S. Magnetic Field

Measuring Conditions

87

Material	Characteristics-	L4
----------	------------------	----

	Course had	Unit	Mea	suring Condi	Low Permeability Material	
	Symbol		Freq.	Flux den.	Temp.	L4
Initial Permeability	μ_i		≤ 10kHz	0.25mT	25°C	50 ± 25%
Saturation Flux Density	Bs	mT	10kHz	H = 4000A/m	25°C	395
Remanence	Br	mT	10kHz	H = 4000A/m	25°C	255
Coercivity	Нс	A/m	10kHz	H = 4000A/m	25°C	200
Relative Loss Factor	tanδ/μ;	10.6	10MHz	< 0.25mT	25°C	170
Curie Temperature	Тс	°C				≥ 300
Resistivity	Q	Ωm				> 10 ⁶
Density	d	g/cm ³				5.10

Note: Material characteristics are typical for a toroid core.

